Digital Light 3D Printing of Biodegradable Elastomers for Personalized Devices

Yinyin Bao*, Nevena Paunović, Daniel Franzen, Andréd R. Studart, and Jean-Christophe Leroux

*Correspondence: Dr. Y. Bao, E-mail: yinyin.bao@pharma.ethz.ch, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich

Keywords: 3D printing · Biodegradable · Elastomers · Digital light processing · Medical devices

3D printing has emerged as a transformative technology for both scientific research and industrial applications.[1-3] In particular, digital light processing (DLP) stands out due to its high printing resolution and excellent surface quality.[3] In combination with computer-assisted design (CAD) and medical imaging, it provides enormous opportunities for personalized medicine, especially for medical implants and devices.[3] However, the fabrication of bioresorbable and elastic medical devices by DLP is challenging due to the difficulty in 3D printing of biodegradable elastomers with desired mechanical properties.[4-7] To tackle this issue, we recently reported a novel ‘dual-polymer’ resin with tunable crosslinking ability, which enabled digital light printing of biodegradable elastomers with silicone-like mechanical performance.[7]

To obtain biodegradable photopolymers in a liquid state at ambient temperature suitable for DLP printing, we synthesized a series of random copolymers from d,l-lactide (DLLA) and ε-caprolactone (CL) with four-arm structure and varied molecular weight (1200 to 15,000 g mol⁻¹), followed by functionalization with methacrylate groups. To enable the printing of the photopolymers with longer chain length, we designed a customized heating system that allows for DLP printing of the resin at elevated temperature, and thus with lower viscosity. Although the elasticity and maximum strain of the 3D printed elastomers from these polymers can be well tuned by changing the polymer chain length, it is still difficult to achieve desired mechanical strength and Young’s modulus at the same time. To further optimize the formulation, we designed a dual-polymer resin by combining the linear oligomer of M_{NMR} 600 g mol⁻¹ (P1) with a feed ratio of 75/25, the resin provided biodegradable elastomers with mechanical properties of bioresorbable and elastic medical devices by DLP. Mean + SD (n = 6). c) 3D printed personalized airway stent based on rabbit airway geometry.[7]