Sputtered Cathodes for Polymer Electrolyte Fuel Cells: Insights into Potentials, Challenges and Limitations
DOI:
https://doi.org/10.2533/chimia.2012.110Keywords:
Electrocatalysis, Electrochemistry, Particle size effect, Polymer electrolyte fuel cell, SputteringAbstract
The level of Pt loadings in polymer electrolyte fuel cells (PEFC) is still one of the main hindrances for implementation of PEFCs into the market. Therefore, new catalyst and electrode preparation methods such as sputtering are of current interest, because they allow thin film production and have many cost saving advantages for electrode preparation. This paper summarises some of the most important studies done for sputtered PEFCs, including non carbon supported electrodes. Furthermore, it will be shown that an understanding of the main morphological differences between sputtered and ink-based electrodes is crucial for a better understanding of the resulting fuel cell performance. Especially, the electrochemical surface area (ECSA) plays a key role for a further increase in PEFC performance of sputtered electrodes. The higher surface specific activities ik,spec of sputtered compared to ink-based electrodes will be discussed as advantage of the thin film formation. The so- called particle size effect, known in literature for several years, will be discussed as reason for the higher ik,spec of sputtered electrodes. Therefore, a model system on a rotating disc electrode (RDE) was studied. For sputtered PEFC cathodes Pt loadings were lowered to 100 ?gPt/cm2, yet with severe performance losses compared to ink-based electrodes. Still, for Pt sputtered electrodes on a carbon support structure remarkably high current densities of 0.46 A/cm2 at 0.6 V could be achieved.Downloads
Published
2012-03-28
Issue
Section
Scientific Articles
License
Copyright (c) 2012 Swiss Chemical Society
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
[1]
Chimia 2012, 66, 110, DOI: 10.2533/chimia.2012.110.