Modular Architecture of Bacterial RNase P Ribozymes as a Structural Platform for RNA Nanostructure Design
DOI:
https://doi.org/10.2533/chimia.2018.882PMID:
30648955Keywords:
Ribozyme, Rna enzyme, Rna nanostructure, Rnase p, Trna processing, Transfer rnaAbstract
Ribonuclease P (RNase P) is a class of enzymes involved in the processing of precursor tRNAs to remove their 5'-leader sequences. Ribonuclease P enzymes are classified into two completely distinct classes, i.e. an RNA-based enzyme and a protein-only enzyme. The RNA-based enzyme functions as a ribozyme in which the catalytic machinery is supported by its RNA component consisting of a single RNA molecule. Bacterial RNase P RNAs are a classical class of ribozymes and their structures and catalytic mechanisms have been studied extensively. The bacterial RNase P ribozyme has a modular tertiary structure consisting of two large domains, each of which can self-fold without the partner domain. Such modular architecture, identification of which provided important insight into the function of this ribozyme, is attractive as a structural platform to design functional RNA nanostructures. The first section of this article briefly summarizes the diversity of RNase P mainly focusing on RNA-based enzymes. The second section describes the structures of bacterial RNase P ribozymes from the viewpoint of their application as modular tools in RNA nanostructure design. The last section summarizes the current state and next steps in modular engineering of RNase P RNAs, including possible design of RNase P ribozyme-based nanostructures.Downloads
Published
2018-12-19
Issue
Section
Scientific Articles
License
Copyright (c) 2018 Swiss Chemical Society
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
[1]
Y. Nozawa, M. Hagihara, S. Matsumura, Y. Ikawa, Chimia 2018, 72, 882, DOI: 10.2533/chimia.2018.882.