High-spin Metal Centres in Dipolar EPR Spectroscopy

Authors

  • Katharina Keller ETH Zurich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
  • Thomas Wiegand ETH Zurich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
  • Riccardo Cadalbert ETH Zurich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
  • Beat H. Meier ETH Zurich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
  • Anja Böckmann Molecular Microbiology and Structural Biochemistry, Labex Ecofect UMR 5086 CNRS/Université de Lyon, Lyon, France
  • Gunnar Jeschke ETH Zurich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
  • Maxim Yulikov ETH Zurich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland. maxim.yulikov@phys.chem.ethz.ch

DOI:

https://doi.org/10.2533/chimia.2018.216

Keywords:

Distance measurements, Epr spectroscopy, Gadolinium, Manganese, Motor proteins

Abstract

The substitution of Mg2+ by Mn2+ in the bacterial DnaB helicase from Helicobacter pylori, an ATP:Mg2+-fuelled protein engine, allows electron paramagnetic resonance (EPR) spectroscopy to be performed on this system. EPR experiments make it possible to monitor nucleotide binding and to estimate the fraction of bound Mn2+ through relaxation measurements. Furthermore, by measuring spin–spin distances we probe the geometry within such multimeric assemblies using ultra-wideband double electron-electron resonance (DEER) and relaxation induced dipolar modulation enhancement (RIDME). The extraction of distance distributions from RIDME experiments on high-spin paramagnetic centres is influenced by the presence of dipolar frequency overtones. We show herein that we can correct for these overtones by using a modified kernel function in Tikhonov regularization analysis routines, and that the overtone coefficients for Mn2+ in the DnaB helicase are practically the same as in the previously studied Mn2+–Mn2+ model compounds.

Downloads

Published

2018-04-25

How to Cite

[1]
K. Keller, T. Wiegand, R. Cadalbert, B. H. Meier, A. Böckmann, G. Jeschke, M. Yulikov, Chimia 2018, 72, 216, DOI: 10.2533/chimia.2018.216.