Looking Back on 35 Years of Industrial Catalysis
DOI:
https://doi.org/10.2533/chimia.2015.393Keywords:
Heterogeneous catalysis, Homogeneous catalysis, Industrial catalysis, (s)-metolachlorAbstract
This article is an account of my 35 years in the Basel Chemical Industry, starting in 1976 as a young research chemist in the Central Research Laboratories of Ciba-Geigy until my retirement as Chief Scientific Officer of Solvias in 2011. In the first section, important aspects of industrial research are commented from my personal point of view with particular emphasis on the importance of team work and the situation of catalysis in the (Swiss) fine chemicals industry. In the next sections, the three most important areas of catalytic research are described where my colleagues and I could not only solve specific Ciba-Geigy / Novartis / Solvias problems, but also developed industrially relevant, generally applicable catalytic methodologies and contributed to the understanding of these complex catalytic transformations: i) Catalytic C–C and C–N coupling catalysis where we developed highly efficient catalysts for the Heck, Suzuki, Buchwald-Hartwig reactions; ii) Hydrogenations using modified heterogeneous catalysts, especially the chemoselective reduction of functionalized nitro arenes and the enantioselective hydrogenation of substituted ketones using Pt catalysts modified with chinchona alkaloids where mechanistic studies led to a working understanding of this fascinating reaction; iii) Enantioselective homogeneous hydrogenation and chiral ligands. The process development for the production of (S)-metolachlor, an important herbicide via an iridium–Josiphos catalyzed C=N hydrogenation is described in some detail, followed by a brief description how the Solvias Ligand Portfolio was developed.Downloads
Published
2015-08-19
Issue
Section
Scientific Articles
License
Copyright (c) 2015 Swiss Chemical Society
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
[1]
H.-U. Blaser, Chimia 2015, 69, 393, DOI: 10.2533/chimia.2015.393.