Nanomechanics – The Link to Biology and Chemistry
DOI:
https://doi.org/10.2533/000942902777680216Keywords:
Biosensor, Cantilever array, Dna hybridization, Molecular recognition, Thermodynamic surface-solution equilibrium constantAbstract
Biological and chemical processes can be transduced into nanomechanical motion via change of surface stress on a cantilever. By coating the surface of each cantilever of a micro-fabricated array of silicon cantilevers with a different polymer, a versatile vapor sensor is obtained that is able to discriminate between various solvent vapors using principal-component analysis techniques. In liquids such sensors allow rapid quantitative and qualitative detection of non-labeled biomolecules. Differential measurements of cantilever deflection (with respect to an unspecific reference cantilever) allow the detection of sequence-specific DNA hybridization. Single-stranded thiolated DNA 12-mer sequences, anchored onto the surface of the gold-coated cantilevers of the array, provide a biosensor for the detection of their complementary strands in buffer solution. The influence of the target-molecule concentration on the cantilever deflection is studied, and a value for the thermodynamic surface-solution equilibrium constant is derived from measurements on a cantilever.Downloads
Published
2002-10-01
Issue
Section
Scientific Articles
License
Copyright (c) 2002 Swiss Chemical Society
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
[1]
Chimia 2002, 56, 515, DOI: 10.2533/000942902777680216.