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Abstract: Through a lens encompassing KNIME workflows,
QSAR models, LLMs, and chemical substructure search strat-
egies, the article navigates the essential considerations driving
innovation and progress in industrial cheminformatics for me-
dicinal chemistry and drug discovery.
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Automation - KNIME Workflows

Automation plays a pivotal role in modern cheminformatics by
streamlining complex laboratory processes and data analysis. A re-
cent notable tendency is the rising popularity of KNIME (Konstanz
Information Minor) workflows for data transformation and anal-
ysis in computer-aided drug design (CADD), where processing
extensive datasets of chemicals and proteins is essential.l!-5!

KNIME is an open-source platform offering robust data pipe-
lining, analysis and reporting capabilities. It enables the construc-
tion of data workflows, execution of specific analyses, and inter-
active data visualisation based on pre-implemented code units
(nodes) that eliminate extensive coding, making it accessible to
a broad audience. The active KNIME community continually
contributes to CADD-related nodes, expanding its capabilities.[6]
Moreover, some of the most popular tools in CADD, offered as
standalone software or libraries for coding languages, are acces-
sible as KNIME nodes.

The key benefit of KNIME in CADD is its capacity to fa-
cilitate semi-automated drug discovery pipelines, integrating
programmatically accessible open-source repositories like
CHEMBL, PubChem, UniProt, and DrugBank.[”l KNIME work-
flows streamline data utilisation and accelerate the journey from
data collection to discovering hidden data relationships. Besides,
they are highly reproducible and adaptable, catering to individual
project needs. Because of that KNIME workflows ranging from
hit identification to ADMET prediction, are gaining increasing
attention over time.[8-10]

Predictive Modelling - Toxicity Prediction
Along-standing and ongoing trend in the modern drug discovery
is the application of the machine-learning technique called QSAR
(Quantitative Structure—Activity Relationship) modelling. QSAR,
a computational technique with roots dating back to the 1960s,[11]
remains highly relevant, evident from the numerous recent papers
indexed in PubMed.['2-14 There are 825 results in Search Results —
PubMed (nih.gov) at 09/29/2023 using ‘QSAR’ as keyword.
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The rekindling of interest in QSAR models can be attribut-
ed significantly to the support from regulatory authorities, no-
tably the FDA (Food and Drug Administration) and the EMA
(European Medicines Agency).!'>:161 These agencies are actively
championing the reduction of animal testing and advocating for
the adoption of alternative methods.

QSAR models learn patterns from a dataset of molecules with
known activities and properties. Subsequently, they apply these
learned patterns to predict the behavior of new molecules. These
models find versatile applications, notably in chemical safety as-
sessment, where they predict chemical toxicity.['7-19 Accessing
this data before production aids sustainable product development
and promotes green chemistry. The advantages of QSAR model-
ling extend to reducing both time and costs associated with drug
and molecule discovery and production. This reduction conserves
resources and addresses ethical concerns, particularly regarding
animal testing. While animal testing is necessary to assess the
safety and efficacy of new drugs and chemicals, there are grow-
ing concerns about the ethical and practical implications of this
practice.[?01 Avoiding unnecessary animal testing has become a
societal debate and a goal of regulatory agencies.

Information Search - LLMs

Almost in any scientific discipline, including cheminformat-
ics, the use of Large Language Models (LLMs) has revolutionized
document and information search within the scientific domain.[?!-
251 LLMs (like Generative Pre-trained Transformer (GPT)) have
the capability to comprehensively analyse huge repositories of sci-
entific literature and databases, making them indispensable tools
for researchers. Through natural language processing, LLMs can
quickly sift through mountains of text to pinpoint specific chemical
compounds, reaction mechanisms, and experimental results, dras-
tically expediting the research process. Moreover, LLMs can gen-
erate highly relevant and context-aware summaries, aiding scien-
tists in distilling key insights from complex scientific documents.
As a result, the integration of LLMs in cheminformatics has not
only enhanced the efficiency of information retrieval but has also
paved the way for deeper data-driven discoveries and innovations
in the field.

Chemical Search - Cloud Databases and GPUs

Another intriguing facet of chemistry, both ancient and con-
temporary, is the chemical search within (cloud) databases, a do-
main shaped by the emergence of cloud services (Fig. 1).

Chemical (sub)structure search is vital in drug discovery, but
it can be time-consuming, especially for large databases.[26-28]
A common approach involves a two-stage process, beginning
with fingerprint screening (‘classical’ chemical search) followed
by subgraph isomorphism detection.[2%-311 However, fingerprint
screening, particularly with larger sizes (>4,096 bits), can be re-
source intensive.

Graphics Processing Units (GPUs), known for their parallel
processing capabilities, have become pivotal in cheminformatics
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Fig. 1. Efficient cloud-based
chemical search leveraging
external algorithms and cloud
resources.

J

Cloud Mative Chemical Search Chemistry SDK

(&

Aol Hras |2

AZure Google Cloud

© | g5 G

Chemaann
JCham Baco

\

Cluster

3

£ e _ _
dutc;i;i.:kg ::1‘5!;‘ = e Chemistry Data Domain -

..I i
e T Molecule

[ Computatianal
. :l-"Structu re Data | ||= Data
‘-

amazon

K 3

REDSHIFT BigQuery
Bioactivity
Data

and bioinformatics.32-371 Recent GPU advancements, including
expanded memory capacity and tools like CuPy, facilitate effi-
cient handling of vast datasets, minimizing data transfer bottle-
necks.[381 To address the challenges of cloud databases and chem-
ical substructure search, a promising solution involves conducting
searches outside the database. This approach leverages usage of
chemistry SDKs like RDKit,391 GPU clusters for scalability, mod-
ern task orchestration techniques, tools like CuPy, and efficient
information retrieval from the database.

Medicinal Chemistry Use Cases

Cheminformatics is a very valuable tool for medicinal chem-
ists, enabling efficient data management, compound screening,
rational design, and optimisation of potential drug candidates. It
accelerates drug discovery and development while minimising
costs and experimental efforts.

In the quest to discover new drugs, not all compounds serve as
suitable starting points due to unfavorable pharmacokinetic char-
acteristics that can, for instance, hinder a drug’s absorption, distri-
bution, metabolism, and excretion (ADME). Consequently, these
compounds are frequently omitted from datasets intended for virtual
screening. Fig. 2 is an illustrative KNIME workflow designed for
hit identification eliminating molecules that exhibit lower drug-like
properties from a dataset. The workflow involves steps such as data
acquisition from the CHEMBL database, data transformation, ma-
chine learning-driven virtual screening, and visualisation of results.

A significant proportion of drug candidates fail during clin-
ical trials due to ADMET-related problems. ADMET predictive

modelling can help reduce the failure rate by identifying unsuita-
ble candidates (poor ADMET profiles) as early as possible, thus
saving time and resources.[041l Moreover, medicinal chemists
can use ADMET predictions not only to discard compounds but
also to guide chemical modifications and optimise the properties
of lead compounds. This optimisation can, for instance, enhance
bioavailability, reduce toxicity, or improve potency. In this regard,
QSAR models can be applied to predict various ADMET prop-
erties of chemical compounds.[*2431 Examples of applications of
these models can include skin sensitisation and prediction of mu-
tagenicity or hepatotoxicity, among others.[44-47]

Cheminformatics tools help medicinal chemists store, organ-
ise and retrieve large amounts of chemical and biological data.
These tools streamline the management of information critical to
drug discovery. Within them, LLMs have emerged recently as a
hot topic for almost every scientific discipline, including medicinal
chemistry. LLMs are instrumental in early-stage drug discovery,
leveraging vast textual data like scientific literature and patents
to identify potential therapeutic compounds.23-24481 LL.Ms have
yielded results useful in solving interesting problems like molec-
ular property prediction, molecule optimisation, compound dis-
covery or target prediction.[*8! Notably, in the field of novel target
prediction, LLMs excel in named entity recognition tasks, offering
more consistent and less noisy results aligned with desired out-
comes. An example can be OncoRTT, a model aimed to predict
oncology-related therapeutic targets using BERT embeddings and
omics features.[*9]

Fig. 2. An illustrative KNIME
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Chemical (substructure) search is crucial in medicinal chem-
istry and small molecule drug discovery, enabling precise mole-
cule retrieval from databases based on specific chemical features.
Although systems designed for this purpose have existed for many
years, quick searches still present a substantial challenge.[%1 This
fact and the rapid growth of virtual libraries make it necessary
to improve current search techniques.!1 A useful approach is the
use of GPUs. Concretely balance GPU-based fingerprint screening
with CPU parallelisation of the subgraph isomorphism screen, with
horizontal scaling to distribute work across multiple machines .21

Conclusions

In this overview, we looked into some aspects of cheminformat-
ics that play pivotal roles in modern drug discovery. The illustrative
KNIME workflow showcased the significance of data-driven hit
identification. ADMET prediction has emerged as a critical tool for
early-stage candidate evaluation, potentially reducing costly clinical
trial failures. QSAR models enhance ADMET predictions, aiding
medicinal chemists in compound optimisation. Cheminformatics
and AI/ML tools, including LLMs, facilitate data management
and information retrieval, with LLMs proving instrumental in ear-
ly-stage drug discovery and novel target prediction. Lastly, chem-
ical substructure search techniques, augmented by GPUs, address
the challenge of rapid library growth, ensuring precise molecule
retrieval and advancing search capabilities in medicinal chemistry
and drug discovery.
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