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Abstract: Using ionic liquids as phase changing materials is of
particular interest in the context of heat storage. As a conse-
quence, predicting accurately the melting point of ionic liquids
is of capital importance as it is one of the most important ther-
mophysical properties in this context. In this work we consider a
data set composed of 2249 different ionic liquids, with a majority
of imidazole or ammonium cation-based molecules. We present
a free and easy-to-use melting point predictive algorithm built on
the CatBoost algorithm, making extensive use of molecular de-
scriptors. Based on LASSO, we select the most relevant descrip-
tors for the task at hand and compare the model with previous
ones.
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1. Introduction
Over the last decades, ionic liquids (ILs) have been of great in-
terest in chemistry. Their low melting point (MP)[1] and other
particular thermophysical properties can be utilized in different
fields, such as heat transfer, conductivity and storage media.[2–4]
Our focus is on their nature as phase-changing materials (PCM).
Indeed, having a low MP can be of great interest when studying
PCM: less energy is required to force the change in state of mat-
ter. Considering the large number of possible ILs, estimated in
the range of 1018, machine learning (ML) and statistical models
are of great help when it comes to predicting ILs properties such
as their MP.

In this work, we discuss a ML method to build a robust and
general predictive model for the MP of ILs (Fig. 1). Indeed, hav-
ing a room-temperature MP is particularly interesting, as the
phase change is known to store heat. Here, the temperature range
of interest I is given by I = [25 °C, 50 °C] = [298.15 K, 323.15 K],
that is, slightly above room temperature. ILs of interest for further

experimental measures, such as heat of fusion and heat capacity,
should have an MP within the I range. Therefore, it is important
to have a particular evaluation metric, the ratio of false positive
(Fp), which gives us the percentage of classification within I that
should not have been predicted in I. Fp is to be minimized to help
reduce costly experimental measures, both in time and resources.
It should be kept in mind that the heat of fusion also plays an im-
portant role in the selection of good candidates, but MP prediction
is of greater importance, since it reduces the number of candidates
(arbitrarily built ILs) to test in the laboratory. Predictive models
for heat of fusion and heat capacity already exist,[5–7] but there is
only a very limited number of molecules for which the heat of fu-
sion is publicly available, whichmeans the construction of general
models is almost impossible as of yet.

We present a quantitative structure–property relationship
(QSPR) approach. As has been emphasized by Valderrama[8] and
Holbrey and Rogers,[9] there are difficulties in accurately measur-
ing melting properties of ILs. These difficulties, among others,
can explain why several values of MP for the same ILs have been
reported, with differences up to 200 K. This makes building accu-
rate general predictive models quite challenging. Once the model
is built, we end by comparing its performance with two naive pre-
dictive models: random draw and all to mean. The results are then
further compared with previous state-of-the-art machine-learning
models in the domain.

2. Methods and Data
The data set consists of 2249 ILs retrieved from Low et al.[10] as
well as some in-house measured MPs. The number of molecules
considered here is slightly larger than in previous works[11–15]
where the data set size is frequently limited to several hundred
ILs or smaller to reduce computational cost[10] and measuring
errors.[9] Note that the majority of ionic liquids in this data set
are imidazolium- or ammonium cation-based[10] and about a quar-
ter of the ILs are bromides, which could influence the predictive
abilities of the models, as the data set is not so chemically diverse.
A model trained on over-represented ions is likely to make errors
when predicting values for the underrepresented ions.

2.1 Descriptors Generation
To build the machine-learning models, we first translate the mol-
ecules into their canonical SMILES with the help of the website
Cactus and generate 860 molecular descriptors from the SMILES
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Fig. 1. Machine-learning model for MP prediction. Step 1 to 3 are automated.
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using the mordred software.[16] It is important to note that the mo-
lecular descriptors generated will depend on the software used[17]
and discrepancies for higher dimensional descriptors are not neg-
ligible. Here, the choice of the mordred software is based on its
free availability and ease of use. Nevertheless, from the 860 de-
scriptors, we cannot decide a priori which are relevant and which
add noise in the predicting algorithms. In machine learning, it
is known[10,18–20] that reducing the number of features, here mo-
lecular descriptors, helps increasing learning speed and predicting
accuracy.

2.2 Preprocessing the Descriptors
The selection algorithm used is the LASSO method,[21] which
stands for Least Absolute Shrinkage and Selection Operator. It
can be described as a linear regression with a regularization pa-
rameter subject to a constraint, allowing to set some of the coeffi-
cients of the standard linear regression to 0. This particular feature
makes LASSO a particularly robust and well-suited method for
selecting relevant molecular descriptors, reducing their number
from 860 down to 156.

2.3 Algorithm
After the data preprocessing, it remains to build and train a pre-
dictive model for our target, the MPs of ILs. The large number
of ML algorithms available in various Python libraries makes it
difficult for researchers to choose the best one for the particular
task at hand. Here, we chose a CatBoost approach. This choice
was influenced by the underlying minimization process based on
gradient boosting, which seemed better suited for the problem at
hand as well as the non-linearity within the data.

CatBoost stands for Categorical boosting and is an open-
source library for gradient boosting on decision trees, developed
by Yandex researchers and engineers.[22] It can easily be imple-
mented in a Python code. The idea behind the algorithm is a sim-
ple gradient boosting: if the goal is to teach a model F to predict
values of the form by minimizing a loss function de-
pending on the metric chosen for the error, the minimization is
made by gradient descent. In our model, we chose to minimize
the root mean squared error (RMSE), as it was evident that min-
imizing the mean absolute error (MAE) was causing the model
to overfit more. Additionally, maximizing the R2 score was of
great importance. Performing Bayesian Optimization, a sequen-
tial optimization strategy widely used in many fields,[23–27] led to
the following hyperparameters for the CatBoost regression mod-
el: iterations = 739, learning_rate = 0.0615, depth = 8, loss_func-
tion = ‘RMSE’.

2.4 Metrics
To evaluate the accuracy of the predictive models, different met-
rics are used. For more details, see e.g. the book by Hastie.[21] In
order of importance for this work we have:
• The ratio of false-positive Fp, given by

where fp and tp are the number of false positives and true posi-
tives, respectively.

• The coefficient of determination R2, with values usually
varying between 0 and 1. A value of 1 indicates that the
explanatory variables can perfectly explain the variance
in the response variable and a value of 0 indicates that
the explanatory variables have no ability to explain the
variance in the response variable. In the case of negative
values, it means that the model is performing worse than
the all to mean model.

(1)

3. Results and Discussion
Once the data set is preprocessed and loaded, we generate 100
random train-test (80% – 20%) splits for training the algorithms.
Each train split is again subdivided following a similar split size,
to get a validation set. This validation set allows to minimize over-
fitting. On each split, we compute the ratio R2 and the R2 score of
the model. On 100 train-test splits, the average results are Fp equal
to 0.12 (standard deviation, sd = 0.01) and R2 equal to 0.75 (sd =
0.02) with the CatBoost method. Fig. 2 represents the predicted
versus the measured MP of a particular random test-train split.

We compare the built model with the naïve ones: random draw
and all to mean. The first one is constructed by assigning an em-
pirical distribution to the MP values of a random training set and
assigning to each IL of the associated test set a random draw from
the distribution. The second one is quite intuitive: we compute the
mean value of the MPs in the training set and assign this value to
each IL of the test set. The naïve models obtainedR2 scores of 0.02
and 0, respectively. We see that the constructed model (R2 = 0.75)
improves drastically the accuracy of the naïve ones.

We emphasize the fact that the ratio of false positive is of spe-
cial interest in this work, since we are interested in ILs as PCM,
and it must be taken with caution. Indeed, changing the interval
of interest I would give totally different results depending on the
width and position of the interval. In this work, the false-positive
ratio of 12%will be of great help for further experimental process-
es, as it can drastically reduce the number of candidates. Indeed, it
means that the model is capable of classifying the molecules with
respect to the interval of interest I with an average accuracy of
88%. It will allow researchers to better preselect the ILs before ex-
perimentally confirm their MPs and search for the molecules with
highest heat of fusion in the particular context of heat storage.

As a MP predictive model, this work falls in the range of the
previous models in the literature, even though models with better
R2 values have been constructed, as can be seen in Table 1. Those
models, however, are built on half as many molecules to predict
from and are thus less general. In Low et al.,[10] the authors con-
structed a Kernel Ridge Regression (KRR) model yielding an R2

of 0.76 on the same data set to the one considered here, up to 37
molecules. The results in our work are very similar, but the gen-
eration and selection process of descriptors is greatly eased for
direct use in laboratory. In Acar et al.,[12] a deep analysis shows
that the model does not perform well for all types of ILs, with R2

scores of around 0.6 for certain clusters in their dataset.

Fig. 2. Plot of predictions vs ground truth of MPs on a random test set.
The prediction from the CatBoost model yields an R2 score of 0.74.
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Themodel presented here has two clear advantages over the previ-
ous ones presented in the literature, especially that from Low et
al.:[10] one only needs the molecules’ names or SMILES and the
descriptor generation software, mordred, is freely accessible, as
opposed to other chemoinformatic software such as DRAGON[28]

orAlvaDesc.[29]We also see fromTable 1 that increasing the num-
ber of molecules in the data set does not always help increase
the accuracy of the model. Indeed, as it has been said previously,
measuring MPs of ILs is quite difficult and errors occur often.
Thus, increasing the number of ILs can increase the error of mea-
surement.

4. Conclusion
In this work, we proposed a complete MP prediction model for
ILs for which only the molecule names are needed, with various
feature selection methods.We optimized the ratio of false positive
Fp of the predictive model in the context of MP of interest in I =
[298.15 K, 323.15 K] and arrived at Fp = 12%.
We are convinced that ILs will be of great use in the energy crisis
we are currently in. In this context, the MP is one of the most
important thermochemical properties to know. That is why the
presented model can be of great help for researchers as it will
reduce the time spent in the laboratory for candidate selection.
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Table 1. Comparison of previous prediction models for the MP of large

sets of ILs.

Reference Method Molecules R2

Our work CatBoost 2249 0.75

[10] KRR 2212 0.76

[11] GC 799 0.82

[12] DL 1253 0.90

[13] GB 2212 0.66

[14] ANN 799 0.54


