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Abstract: The pharmaceutical industry has begun incorporating continuous manufacturing technology in syn-
thetic routes toward active pharmaceutical ingredients (APIs). The development of smart manufacturing routes
can be accelerated by utilizing digitalization, process analytical technology (PAT), and data-rich experimentation
from an early stage. Here, we present the key aspects of implementing automated flow chemistry reactor plat-
forms with real-time process analytics. Based on our experiences in this field, we aim to highlight the potential
of these platforms to conduct self-optimization, automated reaction model building, dynamic experiments and
to implement advanced process control strategies.
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1. Digital Lab – Where to Begin?
The rapid evolution of technology has an impact on our every-

day lives. The high-value chemical manufacturing sector is not ex-
cluded from this evolution. However, the transition to smart man-
ufacturing and a data-rich environment, known as Industry 4.0, is
only happening at a relatively slow pace. The underutilization of
technology and data within the pharmaceutical development and
manufacturing environment leads to long process development
times and often suboptimal production processes for manufactur-
ing active pharmaceutical ingredients (APIs).[1,2]

Examples of data-rich experimentation for reaction optimiza-
tion in continuous flow have been published almost exclusively
by academic groups. The methods developed include self-optimi-
zation,[3–9] automated reaction model building,[10–15] dynamic ex-
periments[16–19] and pre-programmed experiment sequences[20,21]
applied to a variety of different chemistries. However, most data-
rich experimentation is limited to single-step transformations.
These developed reaction optimization methodologies are not
only applicable in continuous flow but can also be adapted for
batch optimization studies.[22,23]

Although a data-rich environment in medicinal chemistry is
at a more advanced stage,[24,25] published reports of data-rich ex-
perimentation in industrial continuous process development are
still scarce. Examples of such reports include: researchers from
Pfizer used an automated platform for optimization of a challeng-
ing Suzuki coupling in an early drug discovery process.[26] In ad-
dition, Merck scientists have developed data-rich flow chemistry
approaches to accelerate their early and late stage process devel-
opment campaigns.[27–29]

The implementation of data-rich workflows requires a diverse
group of people with different background knowledge, such as
organic chemistry, chemical engineering, data science, computer
science, and automation. Therefore, the communication between
engineers and scientists has to be supported. Arguably, one of the
biggest challenges is making the business case for this transition,
as the results and benefits take years of implementation to come
to fruition. Additionally, if there is not a true commitment from
the leadership of the company to ‘go digital’, then resources and
time can be wasted.

We decided to ‘go digital’ at CCFLOW some time ago and
herein aim to provide an overview of the key elements for imple-
menting an automated flow chemistry platform with real-time
process analytics, based on our experiences in this area. In the first
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It was our intention to develop a flexible flow reactor system,
which could be augmented with additional unit operations (e.g.
quench, phase separation). This would allow any flow-suitable
chemical transformation to be operated in the automated platform.
Sensors and actuators should communicate with a distributed con-
trol system (DCS), which has a calibration or driver for each instru-
ment (Fig. 2). Simple sensors often merely provide a current (4–20
mA) or voltage value. For more complex actuators (e.g. pumps,
thermostats), the physical connection with the DCS is generally
achieved using a local area network (LAN) cable, or serial con-
nection (RS-232 or RS-485). The communication with such in-
struments is achieved by a specific protocol, such as transmission
control protocol (TCP), Modbus, profibus or NAMUR. An auto-
mated system can be further expanded by the addition of multiple
DCS units, under the orchestration of a supervisory control and
data acquisition (SCADA) software, generally via Open Platform
Communication Unified Architecture (OPC UA) protocol.

Process analytical technology (PAT) is essential for determin-
ing experimental results within any autonomously operating plat-
form.[38,39] PAT can be integrated as an inline, online, or atline
sensor.[40] PAT devices can be as simple as mass flow meters,
temperature, pressure, pH or conductivity sensors, which provide
valuable information about the state of the reactor system. More
advanced process analytics, which provide structural information
on process species, can be based on spectroscopy (e.g. NMR,
FTIR, Raman, UV/vis) or mass spectrometry.

These aforementioned instruments can provide the control
system with fast results (generally <15 sec per data point), to
make data-driven (automated) decisions and control the process
in real time. While atline or online chromatography provides in-
formation about impurity profiles and trace impurities, it requires
longer measuring times, due to the separation of species.

The collected raw spectral or chromatographic data from PAT
must be processed in real time, to supply concentration values for
the analytes of interest. This can be either achieved by using com-
mercial software or by compiling custom processing algorithms
in open-source software environments. Our experiences with data
processing havemainly focused on four different techniques: inte-
gration, indirect hard modeling (IHM), partial least squares (PLS)
regression and artificial neural networks (ANNs).

Integration is themost common technique, as it is the easiest to
implement.[40] Isolated peaks can be integrated, and the obtained

section, we describe the anatomy of an automated platform, based
on its hardware, software and analytical components. Thereafter,
we will highlight selected experimental applications of these au-
tonomous platforms, with literature context.

2. The Anatomy of an Automated Platform
Automated flow chemistry platforms have been established in

recent years, in industrial and academic laboratories.[30–35] In an ide-
al case, these platforms would design and plan their own synthetic
route, self-optimize the reactions, build reaction models, identify
all intermediates, discover new reactions and work 24/7, autono-
mously. All of the developed platforms are comprised of a hard-
ware component (e.g. reactors, pumps and analytical instruments)
and a software component (e.g. hardware control, experiment se-
lection and data processing algorithms). In our case, the develop-
ment of the automated flow chemistry platform started in 2018
and has been constantly improved over the following years.[36,37]
We strongly focused on real-time process analytics, data analysis
and interaction of the control system with a range of different al-
gorithms (Fig. 1).

Fig. 1. An overview of the essential parts in an automated flow chemistry
platform.

Fig. 2. Connectivity between
hardware and software com-
ponents in an automated flow
chemistry platform made up of
multiple distributed control sys-
tem (DCS) units, controlled by a
central supervisory control and
data acquisition (SCADA) system.
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through the flow cell) and to smooth noisy signals. This processed
data is fed into a database and the control system. The control
system is the heart of the autonomous system and is based on com-
mercial software or has been developed for certain autonomous
platforms in open-source programming languages. The currently
used SCADA system within our labs is based in C# programming
language and uses the commercial software XAMControl (evon
GmbH).

All data streams, fromprocess analytics to actuator controllers,
are bundled within this SCADA system. Different code blocks can
be executed to, for example, assign new flow rates (based on a de-
sired residence time and reagent stoichiometries), switch valves at
certain time points, or calculate objectives (e.g. space-time yield,
E factor) from measured process outcomes. The communication
between the control system and algorithms for data-rich experi-
mentation in third party software can be accomplished by either
simple file exchange or OPC UA communication.

3. Controlled API Production
The pharmaceutical industry is encouraged by regulatory

agencies, such as the US Food and DrugAdministration (FDA) or
European Medicines Agency (EMA), to integrate process analyt-
ics and control technology (PACT) to continuous manufacturing
from an early stage in development.[68] PAT and data-rich experi-
mentation can maximize the knowledge gained from each experi-
ment during early process development. Critical process param-
eters (CPPs) can be more rapidly identified and a control strategy
to reach critical quality attributes (CQAs) can be implemented.
This supports the decision made during scale up and helps to
implement a digital twin for pilot and production scale (Fig. 3A).

During lab optimization, the amount of PAT should be in-
creased to a maximum, to accelerate process development and fa-
cilitate scale-up (Fig. 3B). Reaction kinetics and impurity profiles
can be identified and are valuable information for the control strat-
egy. During the scale-up, the amount of PAT within the process
can be reduced to only essential process analytics. Simple sen-
sors, such as temperature, pressure, flow rates, and conductivity,
in combination with robust hybrid reaction models, can predict
process deviations. Additionally, complex sensors such as NMR,
FTIR or Raman are high in initial investment and maintenance
costs.

We envisage the collection of reaction data during lab-scale
optimization as two different approaches. The first approach is
to find an optimum for the reaction and build a reaction model

response area can be correlated to an analyte concentration using
an external calibration. We have used integration as processing
method for UHPLC[20,21,36,37] or isolated peaks in FTIR[36] or NMR
spectra.[41,42] However, process streams typically contain multiple
different chemical species. Therefore, the spectral data obtained
from these process streams often contain multiple overlapping
signals. When dealing with such data, more advanced techniques
such as PLS regression, IHM, or ANNs can be used to deconvo-
lute the spectrum.

PLS regression is a statistical approach, which finds a rela-
tionship between a dependent variable and multiple independent
variables. The dependent variable is the prediction outcome (e.g.
the concentration of a specific compound), whereas the indepen-
dent variables represent all influencing spectral areas. The train-
ing data set for PLS ideally covers all factors affecting the spec-
trum, such as concentration, temperature, or pH. Preparing a good
quality training and validation dataset that includes all of these
effects is time consuming. However, this approach is probably the
most commonly utilized advanced technique to analyze complex
mixtures in real time.[43–46] In our laboratory this is the method of
choice for FTIR analysis.[6,21,37]

IHM is a spectral hard modeling technique that describes a
pure component spectrumusing numerousGaussian or Lorentzian
peaks.[47,48] These pure component models can then be combined
into a mixture model. This technique originated for the interpreta-
tion of FTIR and Raman spectra[49–51] and has more recently been
used with NMR spectroscopy.[52–55]One benefit of IHM is that the
model’s constraints can be adjusted to capture peak broadening
or peak shifts. The amount of training and validation data can be
minimized and, in the case of NMR, one-point calibrations are
possible. Therefore, IHM has been our method of choice to pro-
cess NMR spectra.[6,15,37]

Finally, ANNs are also utilized as a data processing tool in the
PAT community.[56–63] Reliable models are only obtained by train-
ing with large data sets. These training sets can comprise simu-
lated and real spectra from the process. Before trainingANNs, the
training data can bemanipulated to emulate baseline shifts or peak
shifts to get a more extensive training data set. ANNs have been
used in our platform to process NMR and UV/vis data.[37]We also
utilized ANNs in an approach called data fusion.[64–66] Therein,
multiple data streams from different PAT devices can be combined
to predict the output parameters of interest.[67]

The obtained concentration values then need to be further
processed with filters to avoid outliers (e.g. an air bubble going

Fig. 3. Implementation of PAT and data-rich experimentation throughout different stages in process development, toward a fully functional digital
twin, usable in a production environment.
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contradictory objectives (e.g. space-time yield versus product pu-
rity). Multi-objective algorithms often use a Bayesian optimiza-
tion method.[4,81,82] In such methods, the sample data is described
using Gaussian process surrogate models. Specific acquisition
functions choose the next point to be investigated, balancing be-
tween regions which currently have fewer data points (explora-
tion) and regions of known good performance (exploitation).

Typically, chromatography (HPLC or GC) is used as PAT in
self-optimization platforms. The advantage of chromatography is
that it provides a detailed reaction profile of products and impuri-
ties. However, the relatively slow speed of analysis has limited
either the reaction complexity (the number of optimizable vari-
ables and their accessible ranges) or increased the run time of such
platforms for multi-step reactions.[7,9,83]

Our approach was to use fast inline process analytics, namely
FTIR and NMR, for the telescoped synthesis of the API edara-
vone. (Fig. 4B).[6] In combination with advanced data processing
(chemometric analysis), the major reaction intermediate could
be accurately quantified. A Bayesian optimization algorithm was
used to optimize this two-step reaction. In total, seven different
variables could be tuned to find the optima for three objectives.

In order to further improve self-optimization platforms, the
recorded data should be assessed more critically and a mechanism
to identify false positive results should be integrated. Repetition

around this point.An optimum in a broad process space with mul-
tiple manipulable variables can be found with self-optimization.
This should not only be limited to continuous variables (e.g. flow
rates), but also include discrete or categorical variables, such as
the design of the reactor, different reagents, solvents or catalysts.
After the categorical variables are identified (reactor length, re-
agents, etc.) and process variables are narrowed to a smaller range,
automated response surface modeling can be a successful way to
provide a robust reaction model.

The second approach is to collect kinetic data for the investi-
gated reaction. This can be accomplished by steady-state experi-
ments or dynamic experiments and can be used to build either
mechanistically-accurate models, or simplified models based on
the observed species. The collected optimization data can then be
used to build hybrid reaction models for applications including
model predictive control (MPC).

There has been only a handful examples of process control
demonstrating automated flow chemistry published in the litera-
ture.[44,69–72] The possible reason for this might be that, up to now,
the main focus was to automate the platforms, translate batch
protocols to flow and explore new reactions with flow technol-
ogy. In academic laboratories, chemistry platforms are mainly run
during the space of a working day and therefore there is no need
for such a complex process control system. The integration of a
digital twin in a production facility is time consuming, however,
can provide several advantages.[73] The instrumentation used can
be monitored, and predictive maintenance can be used to spot
faults in equipment earlier. Model predictive control can be used
to automatically adjust CPPs to maintain CQAs in real time. In
case out-of-spec material is produced, real-time release strategies
(e.g. diversion to waste) or surge tanks can be used.

4. Self-optimization
Self-optimization platforms reduce the labor-intensive task

of finding the optimum of a reaction. Our envisioning of a self-
optimization platform follows the following general stages (Fig.
4A). 1) The optimization algorithm plans new experimental values
and sends them to the control and database. 2) The control soft-
ware calculates the new process parameters from the variables, sets
them, then waits until the system is in steady-state. 3)After analyz-
ing the results with process analytics and processing the data, the
control software calculates the derived objectives from the results
of the PAT. 4) The final values for the objectives are sent to the op-
timization algorithm, which suggests a new experiment. Flexibility
in choice of the optimization algorithm was important, therefore
the algorithm is not directly embedded in the control system.

Self-optimization algorithms can be classified as local or glob-
al and single- or multi-objective algorithms.[3,74] A local single
objective algorithm is, for example, the Nelder-Mead simplex
(NMSIM) algorithm, which has been used with numerous auto-
mated flow chemistry platforms.[75,76] The algorithm represents
the experimental points as a simplex of n–1 points (where n is
the number of optimization variables). In the next iteration of the
algorithm, the poorest performing point is substituted by a new
experimental point. This creates a new simplex and gradually con-
verges on a local optimum.

The stable noisy optimization by branch and fit (SNOBFIT)
algorithm has been successfully employed to find a global single
objective optimum in flow chemistry systems.[77–80] The algo-
rithm is gradient-free, meaning it does not need information of
the chosen objective function. The optimum is approximated with
stochastic linear and quadratic surrogate models. Surrogate mod-
els can relate process inputs to complex optimization problems.
The stochastic nature of the surrogate models improves the stabil-
ity against noise.

Global multi-objective algorithms are especially of interest for
process chemistry, since the best process conditions often have

Fig. 4. A) The different stages during a self-optimization experiment. B)
Simplified process scheme for the two-step synthesis of edaravone.
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of experiments throughout the optimization could identify a drift
over time (e.g. catalyst degradation) and provide more confidence
in the obtained data set.

5. Reaction Model Building
Self-optimization algorithms provide the operator with an op-

timum of the reaction. However, these algorithms generally work
as a ‘black-box’ and do not provide detailed reaction knowledge
for further modeling and scale-up studies. Design of experiments
(DoE) is a popular approach in the pharmaceutical industry to
obtain a reaction surface model.[84,85] Selected experiments within
the design space are chosen to identify interaction effects of vari-
ables for process optimization.[86]These experiments can be based
on different designs, for example full factorial or a face centered
design.A multiple linear regression model, including linear, inter-
action, and quadratic terms, is used to describe the design space.
DoE has been extensively used in flow chemistry to optimize re-
actions, however, the acquisition of data and the analysis part are
separated.[14,87–89] This typically requires specialist knowledge in
performing the experiments and interpreting the results. Our in-
tention was to connect the execution of experiments and automate
the model-building and analysis.[15]

Optipus, an open-source software written in python, can au-
tonomously carry out the complex process of fitting and evaluating
reaction models in an iterative fashion, as reactions are performed
(Fig. 5A).[15]The boundaries and experimental design for Optipus
have to be defined by the user, then the algorithm executes the first
set of experiments. The model confidence is constantly evaluated
by the measures of R2 and Q2, coefficient of determination and
predictive relevance, respectively. Additionally, the repeatability
of the experimental data is assessed in each experimental step.
Another important feature is that the software automatically de-
tects outliers within the experimental data set. If an observed re-
sponse shows an error of >4 standard deviations from the model-
predicted response, the experiment is marked as an outlier.

Optipus has been demonstrated for two different reactions:
S
N
Ar and a photochemical benzylic bromination, each following a

different approach (Fig. 5B). The first approach uses two cycles of
experimental design: the first to build a broad reactionmodel, then
a more defined one around the initially identified optimum. The
second approach uses a self-optimization algorithm to define the
optimum reaction space, then performs an experimental design
study within this region. Both approaches resulted in excellent
quantitative reaction models, relating the input variables (4 and
6 for the first and second reactions, respectively) to the output
objective of space-time yield.

The limitation of the software so far is that it can only build
the reaction model for one objective. To correctly identify squared
terms, a face centered design has to be used. Having n variables, a
face centered design includes 2n experiments for the factorial de-
sign and an additional 2n experiments for the face centered points.

6. Dynamic Experiments
The iterative model building and self-optimization approaches

require that the flow system reaches steady state for each experi-
mental set point. If a new experimental point is investigated, set
points are changed, and the automated platform usually waits
roughly three residence times to ensure a steady state. This dra-
matically increases thematerial consumption for each experiment,
and the data collected between experiments are typically neglect-
ed. However, the transient data between two different steady states
can prove to be highly valuable for reaction optimization.[16]

In batch chemistry, the investigation of different reagent stoi-
chiometries is a labor- and resource intensive task. Each investi-
gated point is an individual experiment and needs to be prepared
and analyzed. In comparison, in a continuous flow dynamic ex-
periment the change of the reagent equivalents can be captured

within one experiment, by gradually changing the input flow
rates. During dynamic experiments, one or multiple variables are
changed by a defined ramp. This dynamic change can be either
linear between two steady states or a non-linear screen through a
whole design space.

The sampling frequency of the PAT needs to be fast enough to
capture all variations during the dynamic experiment. Typically,
fast process analytics such as spectroscopic instruments (NMR,
FTIR, Raman) are used for dynamic experimentation. HPLC (run
times of 10–30 min) is typically too slow to capture the dynamics
of the system. However, it can be used to confirm and validate the
experimental points taken by a fast PAT.[18] Additionally, HPLC
has been utilized as offline PAT in combination with a fraction
collector or as atline process analytics with special interfaces that
allow the samples to be parked before analysis.[90] UHPLC (run
times <5 min) might be a good compromise for fast data acquisi-
tion and sensitivity for trace impurities.

The data acquired from the PAT need to be traced back to their
corresponding input conditions by well-characterized reactor
models, including the axial diffusion and residence time distribu-
tion. The utilization of transient reaction data allows quick scan-
ning through a design space, or kinetic analysis in flow.[17,19,28,91]
Additionally, the acquired data can be used for parameterizing or
validating simulations in modeling software.

7. Outlook
The world is moving toward a sustainable future. The chemi-

cal and pharmaceutical industry must contribute to this goal.
Optimization of reactions in flow is typically highly labor-inten-

Fig. 5. A) The concept of Optipus, executing fully autonomously experi-
ments and building a reaction model in real time. B) Simplified process
scheme for the model reaction a photochemical benzylic bromination.
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sive and consumes a lot of material. The digitalization of laborato-
ries allows for faster and more efficient process development, but
still has several drawbacks and limitations that must be addressed.

A significant current restriction of thesemethods is the amount
of material needed in the reaction optimization. This material con-
sumption can be drastically reduced by implementing a droplet
flow reactor system, as reported by the group of Jensen, amongst
others.[10,12,13] In this type of reactor system, only a small reaction
droplet, separated by an immiscible solvent or gas, is created. In
the near future, we expect to see more of such systems used for
data-rich experimentation.

Multi-step reaction cascades are still very difficult to optimize,
because of the large number of optimization variables and the re-
sults of the previous steps influencing the later ones.Additionally,
incompatibilities between steps, such as solid formation, are a big
challenge for automated platforms. The data generated during
process development must be stored and managed in an efficient
manner. Only then can the process optimization data be utilized
to accelerate the development of similar processes.

In order to unlock the full potential of digitalization in flow
chemistry, educational institutions have to adapt their curricula to
provide graduates with the skill set of tomorrow. Pharmaceutical
companies have to utilize this knowledge, which is often spread
across several different departments. Therefore, the operational
strategy must provide resources, as well as support communi-
cation and collaboration between these departments. Small and
medium-sized companies, with less focus on the implementation
of new technologies, are often lacking resource and expertise in
one or more of the required fields. This knowledge gap can be
filled by either external contracting or strategic hiring decisions.

Traditionally, chemistry was driven by labor-intensive man-
ual lab work. Automation and digitalization are an opportunity
to more rapidly address the challenges in the upcoming future.
However, chemists will not be able to do this transformation on
their own. Therefore, we have to open up to collaboration with
other disciplines, to take the leap and go digital.
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