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Abstract:Many chemical reactions exhibit nonadiabatic effects as a consequence of coupling between electronic
states and/or interaction with light. While a fully quantum description of nonadiabatic reactions is unfeasible for
most realistic molecules, a more computationally tractable approach is to combine a classical description of the
nuclei with a quantum description of the electronic states. Combining the formalisms of quantum and classical
dynamics is however a difficult problem for which standard methods (such as Ehrenfest dynamics and surface
hopping) may be insufficient. In this article, we review a new trajectory-based approach developed in our group
that is able to describe nonadiabatic dynamics with a higher accuracy than previous approaches but for a
similar level of computational effort. This method treats the electronic states with a phase-space representation
for discrete-level systems, which in the two-level case is analogous to a spin- . We point out the key features
of the method and demonstrate its use in a variety of applications, including ultrafast transfer through conical
intersections, damped coherent excitation under coupling to a strong light field, and nonlinear spectroscopy of
light-harvesting complexes.
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1. Introduction
Molecules live in a quantum world and, in principle, knowl-

edge of the quantum-mechanical wavefunction, , contains suf-
ficient information to determine the outcome of almost any ex-
periment (at least in the low-energy physics domain). However,
the complexity of solving the full time-dependent Schrödinger
equation, , limits state-of-the-art calculations to
very small molecules.[1] It is therefore common in computational
chemistry to completely neglect quantum effects and employ clas-
sical molecular dynamics ( ), which enables
simulations of thousands (or even millions) of atoms. A particu-
larly challenging problem is the simulation of nonadiabatic chem-
ical reactions, including (but not limited to) ultrafast dynamics
initiated by light. In contrast to adiabatic processes, which evolve
on a single Born–Oppenheimer potential-energy surface, it is not
possible to model nonadiabatic processes directly using classical
molecular dynamics, due to the fact that multiple potential-energy
surfaces are coupled together. Thus, in order to describe experi-
ments involving complex molecular systems, it is necessary to
develop methods that bridge the quantum and classical worlds
by including the most important quantum effects but retaining
as much as possible of the simplicity, computational efficiency
and interpretability afforded by classical mechanics. The present
article summarizes our recent developments together with a few
representative applications.

In many cases, we wish to use a classical description for the
nuclei and a quantized treatment of the electronic-state population
amplitudes. The mixed quantum–classical Hamiltonian may be
written as

(1)Ĥ(x, p) =
p2

2m
+ V0(x) + V̂ (x),

where is a state-independent potential, and is a ma-
trix of potential-energy surfaces and diabatic couplings. Note that
such mixed quantum–classical models are not just limited to de-
scribing electrons and nuclei but are applicable also in many other
cases, for example atoms interacting with photons or the decoher-
ence of qubits in a noisy environment. In itself, mixing quantum
and classical dynamics is not a new idea and one can trace simi-
lar concepts back to the foundations of quantum mechanics. The
complication is that the equations of motion generated by this
mixed Hamiltonian are not uniquely determined.

The simplest example of a mixed quantum–classical approach
is provided by a mean-field approach called Ehrenfest dynamics,
in which one simply propagates the electronic wavefunction, ,
using the Schrödinger equation and the nuclear positions and mo-
menta, (x, p), using Hamilton’s equations of motion with the ex-
pectation value of the force:

Although this approach can correctly describe the electronic and
nuclear motion separately, it neglects most of the correlations that
should exist between them.[2] It is therefore widely known to lead
to incorrect predictions for nonadiabatic dynamics as well as to
severely violate detailed balance.[3]

Much effort has been invested in developing methods that
improve upon Ehrenfest dynamics. The most popular today
is surface hopping,[4] which has become the standard tool for
simulating ultrafast processes encountered in photochemistry.
Unfortunately, no rigorous derivation has been given and the al-
gorithm is known to suffer from a number of serious problems,
such as a lack of decoherence.[5]Although many different “deco-
herence corrections” have been suggested, it is clear that this is
an ad hoc fix which may help in some cases but is not guaranteed
to work in general.

(2)ih̄ |ϕ̇⟩ = V̂ (x) |ϕ⟩ , ẋ =
p

m
, ṗ = −∂V0
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classical magnitude = . This choice guarantees the
classical expectation values of products of operators to be equal
to their quantum traces,[22,23]

where ×
sin d d is an integral over the sphere. This provides a phase-
space formulation for two-state systems, which is known as a
Stratonovich–Weyl representation and is analogous to theWigner
representation of continuous systems. The relation does not hold
when using the Q-sphere but is unique for the W-sphere. A com-
parison between the two spheres is shown in Fig. 1. Note that
the W-sphere (right panel) is purely in state |1〉 on the “north-
ern polar” circle (or in state |2〉 on the “southern” circle) rath-
er than at the poles. These circles are positioned at an angle
c = arccos ≈ 54.7° which is notably identical to the “magic
angle” used in NMR spectroscopy.

Our spin-mapping dynamics are initialized by sampling x and
p from a Wigner distribution and uniformly from the W-sphere
(in contrast, Ehrenfest dynamics would start from a single
point). For each set of initial conditions, we run a trajectory ac-
cording to Eq. (4), measure an observable B( ) at time t and aver-
age the results over the ensemble. In the case that the zero-time
observable is a population, one can alternatively employ so-called
“focused” initial conditions by sampling the initial from the cor-
responding polar circle rather than the entire sphere.

As an example of how the different spin constructions im-
pact the dynamics, we have calculated the population dynamics
in a model of a two-level system linearly coupled to a harmonic
bath (called a spin–boson model), for which the fully quantum re-
sult can be computed using the quasiadiabatic path-integral meth-
od.[24] As shown in Fig. 2, the spin-mapping approach is found to
give more accurate results than the corresponding calculations us-
ing Ehrenfest dynamics or MMST mapping (which correspond to
dynamics on a smaller/larger sphere, respectively). All these three
approximations employ the same form of the equations of motion
and have roughly the same level of computational effort, yet the
results are of different accuracy. Further results for a range of spin–
bosonmodels lead to similar conclusions and are given in ref. [19].

Formally, the classical-like dynamics presented above is
known as a linearization of the fully quantum propagation.[25]
One can go one step further and apply this linearized approxima-

(5)
�

A(σ)B(σ) d2σ = Tr[ÂB̂],

An alternative strategy is to map the quantum system onto a
problem that has a well-defined classical analogue, in order to
define a consistent classical limit where the quantum and classi-
cal degrees of freedom are treated on the same footing. One such
mapping, proposed by Meyer and Miller and formalized by Stock
and Thoss (MMST),[6,7] expresses the electronic operators in a sec-
ond-quantization picture. The resulting creation and annihilation
operators are written in terms of the positions andmomenta of ficti-
tious harmonic oscillators, which are then treated classically in the
same way as nuclear modes. This approach has been used to sys-
tematically derive approximations that improve upon Ehrenfest
dynamics.[8] However, these approximations introduce new incon-
sistencies associated with the fact that only the singly-excited oscil-
lator states map back to the electronic states, whereas all other ex-
citations are unphysical.[9]Although certain tricks have been able to
overcome or at least mitigate some of these problems,[10–15] it is clear
that mapping to harmonic oscillators cannot be the final answer.

2. Spin Mapping
As an alternative to the MMST mapping, a number of au-

thors have considered mapping the system to spin degrees of
freedom.[16–18] However, these methods originally suffered from
various problems and were therefore abandoned in favour of
the harmonic-oscillator mapping mentioned above. In recent
work, we have shown how these problems can be overcome to
obtain a practical and accurate “spin-mapping” method. Here,
we only briefly introduce this theory; more details can be found
in refs. [19, 20].

2.1 Outline of the Theory
For a two-level system, it is well-known that the system and

its potential are equivalent to a spin- in a (fictitious) magnetic
field. The system state is then represented by a vector on the Bloch
sphere. In comparison to a set of harmonic oscillators, the spin-
has the advantage that its Hilbert space has the same size as the
original problem (two states) whereas the oscillators introduce an
infinite number of unwanted states. It is common to represent the
state of a two-level system by the vector , whose
components are phase-space representations of the Pauli spin op-
erators. The corresponding classical representation of the
Hamiltonian is

leading to the equations of motion

In otherwords, all degrees of freedom are coupled such that the spin
precesses around the fictitious magnetic field V(x), which changes
as the nuclei evolve on a potential defined by the instantaneous
direction of the spin.

Different methods can be distinguished by their construction
of . If one chooses to be a vector on the usual Bloch sphere,
then one recovers Ehrenfest dynamics. Here the system is purely
in state |1〉 on the north pole, in state |2〉 on the south pole, or in a
superposition state everywhere else. In this way, any wavefunc-
tion of a two-level system can be represented by a spin coherent
state. In phase-space terminology, this is analogous to the Q sym-
bol, also known as a Husimi distribution.[21] This is however not
the only possible choice: in particular, it is beneficial to pick the
magnitude of the spin to be a factor √3 larger than the Q-sphere,
where the numerical factor appears because a spin s = 1/2 has the

(3)H(σ, p, x) =
p2

2m
+ V0(x) + V (x) · σ,

(4)σ̇ = V (x)× σ, ẋ =
p

m
, ṗ = −∂V0

∂x
− ∂V

∂x
· σ.
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Fig. 1: Comparison of the “spin spheres” used in Ehrenfest dynamics
(left) and spin mapping (right). The Ehrenfest sphere can be thought
of as the usual Bloch sphere of radius 1, where the populations |1〉 〈1|
and |2〉 〈2| correspond to the north and the south pole, respectively. The
spin-mapping sphere (right) is a factor √3 larger, and populations corre-
spond to “polar” circles.
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Here, 〈·〉0 denotes the average with respect to the initial distribu-
tion 0, whereas 〈·〉eq employs the thermal equilibrium distribution
eq = e− H/Z according to the mapping Hamiltonian [Eq. (3)],
where = 1/kBT is the inverse temperature and Z the partition
function.

Equation (6) relates dynamical properties to statistical aver-
ages. It implies that the accuracy of the long-time predictions of
an ensemble of mapping trajectories depends on how accurately
the method approximates the correct thermal distribution. To
investigate this issue, we consider as a simple example a quan-
tum system consisting of two levels separated by an energy gap
2 in thermal equilibrium. The correct population of the excited
state according to the quantum Boltzmann distribution should be
e−2 /(1+e−2 ), where = denotes the only relevant dimension-
less parameter in this problem.

In Fig. 3we compare the average population of the excited state
for this system versus from three mapping methods, namely spin
mapping, Ehrenfest and focused MMST mapping, the key differ-
ence being the radius of the sphere used in each case. Formally,
it can be shown that spin mapping is able to predict the correct
population up to second order in powers of , while the other two
methods are only correct to zeroth order.[30]This provides a mathe-
matical explanation for why spin mapping typically gives accurate
predictions of population relaxation in condensed-phase systems,
at least at high temperatures, and allows us to determine the param-
eter regime in which it is expected to be a reliable approximation.

For increasing values of we notice a dramatic break-down of
the predictions of both spin mapping and MMST. As the relative
energy difference between the two levels increases, the system is
more likely to occupy the two “polar” regions of the electronic
phase space. Those regions correspond to states where the popula-
tion of the excited level acquires a negative value. For small values
of the existence of these regions does not cause a problem for
spin mapping (in fact they are the reason for its success) and even
if some individual trajectories enter the polar region, the ensemble
average remains accurate. For larger values of , however, the
strong magnetic field distorts the ensemble average causing the
populations to become negative. In the case of Ehrenfest these
regions do not exist and hence the population of this method is
guaranteed to remain positive for arbitrary values of . However,
although the absolute error of Ehrenfest is small in the large- re-
gime, the asymptotic behaviour is nonetheless completely wrong,
leading to large relative errors.

Luckily, in many cases, the most interesting regime for non-
adiabatic dynamics is where is not too large. This is because

tion only to the nuclei and not to the electrons, called partial lin-
earization, which is more accurate but typically requires an order
of magnitude more trajectories to converge.[26,27] While the fully
linearized dynamics can predict population dynamics reasonably
well, the partially linearized dynamics are especially well-suited
for the computation of linear and nonlinear spectra, as demonstrat-
ed in Section 3.4 below. This is a particular advantage over surface-
hopping methods, which are not naturally applicable to simulate
dynamics of the coherences created in optical spectroscopy.

How can this approach be generalized tomore than two levels?
As a first attempt, one may expect to look for a mapping to higher
spin quantum numbers, such as a spin-1 for three levels. However,
there is an important distinction between these two systems, in that
the spin-1 in a magnetic field always has equally spaced energy
levels, which is not sufficiently general to describe arbitrary three-
level systems. From a group-theoretical perspective, all spins have
symmetry SU(2), while an N-level system has symmetry SU(N).
For this reason, higher spins do not provide the most natural ex-
tension of the theory outlined above. Instead, one can construct a
phase-space representation of an N-level system by replacing the
factor √3 by . This generalized spin-mapping approach
guarantees that Eq. (5) remains true for any number of levels.[20]

2.2 Thermalization Properties
The results in Fig. 2 indicate that spin mapping is more ac-

curate than both Ehrenfest and MMST for the prediction of time-
dependent populations. In this section, we investigate the reasons
behind these observations and show that the radius used for the
spin-mapping sphere is optimal for predicting long-time thermal-
ization properties for an important class of nonadiabatic systems.

The mapping approaches discussed in the present work ap-
proximate quantum nonadiabatic dynamics with the evolution of
Hamilton’s equations of motion in an extended phase space. This
feature allows us to use concepts and results of classical ergodic
theory. In particular, we expect that the long-time limit of any
arbitrary initial distribution will be of the canonical form, pro-
vided energy can be identified as the only constant of motion—
that is, if the dynamical system is ergodic.[28]We additionally as-
sume that the mapping dynamics is strong mixing[29] on the sur-
faces of constant energy, meaning that the time-correlation func-
tions between any two observables A and B will relax to the limit

(6)lim
t→+∞⟨AB(t)⟩0 = ⟨A⟩0⟨B⟩eq.
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Fig. 2: Population dynamics in a two-level asymmetric spin–boson
model following an initial excitation to the upper state. The bath has
an Ohmic spectral density and all system parameters are defined by
“model c” in ref. [19].

Fig. 3: Comparison between the predictions of different methods for the
thermal population of the excited state of a two-level system.
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sue is not further investigated. An advantage of the spin-mapping
method is that we can obtain more accurate results without these
ad hoc corrections.

3.2 Population Dynamics in Light-harvesting
Complexes

Over the last decades, there has been an intense discussion
in the literature about whether quantum effects are necessary in
order for biological systems to function. In our opinion, one of
the reasons for why this has become such a controversial ques-
tion is because there has not yet been a clear-cut way to provide
an answer. For instance, one might find a large discrepancy be-
tween an Ehrenfest simulation and the experimental result and
conclude that it arises from the neglect of nuclear quantum ef-
fects. However, an alternative explanation would simply be that
the well-known problems with detailed balance are the cause of
the discrepancy. It is therefore necessary to use more accurate
mixed quantum–classical approaches like spin mapping to answer
these questions.

One of the prototypical examples in the study of photosyn-
thesis is the Fenna–Matthews–Olson (FMO) light-harvesting
complex found in green sulfur bacteria. A simple excitonic model
of this complex consists of seven sites coupled to a protein envi-
ronment of hundreds of vibrational modes. Fig. 5 demonstrates

for 1 the problem would be better and more simply described
by a single adiabatic ground state, as the excited state is so much
higher in energy. Nonetheless, it would still be useful to develop
a method which is uniformly accurate across the whole range.
Further improvements of the thermal predictions of spin-mapping
methods are currently under investigation in our research group.

3. Applications

3.1 Ultrafast Dynamics in the Benzene Cation
A challenging problem for nonadiabatic simulationmethods is

to describe transfer through a conical intersection. As an example
of such a process, we investigate the nonradiative decay of the
benzene cation from its second excited state to the ground state
. Fig. 4 compares the population dynamics using a few differ-

ent trajectory-based methods for a linear vibronic-coupling model
with three states and five modes, for which exact quantum bench-
marks are available. Again, it is clear that the dynamics on the
spin-mapping (W) sphere is more accurate than using Ehrenfest
dynamics or MMST mapping. Also shown for comparison is sur-
face hopping, which is found to deviate from the correct behav-
iour already after the first period of population oscillations. It is
possible that the surface hopping results reported here[8] could
be improved by employing a decoherence correction, but this is-

Fig. 4: Population dynamics in the benzene cation following an initial excitation to . The dynamics was propagated on the three-state five-mode
model by Köppel.[31] Figure adapted from ref. [30]; surface-hopping results were taken from ref. [8]. Both the spin- and MMST-mapping results used
focused initial conditions.
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Fig. 5: Population dynamics in the FMO complex with a phonon relaxation time of 50 fs at T = 300 K after an initial excitation to site 1. The inset
shows the spatial configuration of the seven sites included in the model. The simulations were carried out using “focused” initial conditions as de-
scribed in ref. [20]. The fully quantum HEOM results are from ref. [32].
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that spin-mapping dynamics together with a completely classical
description of the nuclear vibrations is sufficient to obtain the fully
quantum result, which in this special case can be computed using
the hierarchical equations of motion (HEOM).[33] In a world that
obeyed Ehrenfest dynamics, photosynthesis could not function ef-
ficiently as there would be no preferential flow of energy through
the complex from site 1 to sites 3 and 4. However, in this case, spin
mapping provides a better approximation to reality and can be used
to understand themechanism in the simplest way. This conclusively
demonstrates that this key step of photosynthesis does not require
quantum-mechanical effects of the vibrations in order to function[34]
and thus refutes a commonly-held belief to the contrary.[35]

3.3 Driven Damped Rabi Oscillations

The photo-induced reactions in benzene and FMO presented
above were described with the assumption that the excitation
pulse was instantaneous. However, this is not always a valid ap-
proximation, and in order to study the dynamics during as well as
after the photo-excitation step, in strong fields as well as for arbi-
trary-shaped pulses, we need to explicitly include the coupling to
a light field in our theory. To this end, we add the electric-dipole
term – to the Hamiltonian, where is the dipole operator
and E(t) the time-dependent electric field at the position of the
molecule.[37] In this way, the spin-mapping equations of motion
[Eq. (4)] obtain an explicit time dependence.

Note that we do not need to make any assumptions regarding
the functional form of E(t), meaning we can simulate any pulse
shape, strength or sequence of pulses we like. Also, our approach
does not rely on the rotating-wave approximation (RWA), so that
we do not have to constrain ourselves to studying low light inten-
sities and (near-)resonant frequencies. By taking only the electric-
dipole term as the interaction Hamiltonian, we have however ef-
fectively introduced the long-wavelength approximation. This is
typically valid as long as the wavelength of the light is very large
compared to the system dimensions. However, it would in prin-
ciple be possible to include a multipole expansion[38] in order to
treat special cases in which magnetic effects also play a role, such
as in strong-field ionization.

Fig. 6: Damped Rabi oscillations for a spin–boson model, with system
Hamiltonian , where = 0.025, which is coupled to an Ohmic bath
with Kondo parameter = 0.1, characteristic frequency c = 0.5 and in-
verse temperature = 1.0. The system is further coupled to a light field
by , with the frequency = 2 on resonance,
and = 1.0 > ω, such that the RWA is not valid. Also note that the char-
acteristic timescale of the bath (~1/ c) is comparable to that of the sys-
tem (~1/ ), such that the dynamics is non-Markovian. We computed the
numerically exact dynamics using HEOM with the open-source pyrho
package,[36] both with and without the RWA.

As an example, we simulate the population dynamics of a two-
level system coupled to an environment of nuclear vibrational
modes that is continuously driven by a resonant light field. This
results in damped Rabi oscillations, as shown in Fig. 6. We have
chosen the parameters such that we are in a regime where the
commonly-used Markovian and RWA approximations break
down. This means that if we do make the RWA (indicated with
“RWA” in the figure), this will not yield a good estimation of the
exact dynamics, and this is indeed what can be observed: the
HEOM result within the RWA does not even qualitatively agree
with the HEOM result without the RWA.

As mentioned, we do not need to make the RWA to be able to
use spin mapping, and the spin-mapping result without the RWA
can be seen to agree very well with the exact result.

3.4 Nonlinear Spectra
Many approaches exist for computing optical spectra involv-

ing electronic transitions between the ground and a single excited
state.[39–42] A particularly convenient approach is the Wigner-
averaged classical limit (WACL), which computes the associated
real-time correlation functions by propagating nuclear trajectories
on the time-independent arithmetic-mean surface of the ground
and excited state.[43,44] However, calculating optical spectra for
systems involving multiple coupled excited states is much more
challenging, as the underlying correlation functions now involve
nonadiabatic dynamics within the coupled excited-state manifold.
To tackle this problem, we have recently developed a spin-map-
ping approach that reduces to WACL in the limit of uncoupled
excited states, but otherwise incorporates the correct nonadiabatic
spectral features away from this limit.[45]

So far in this article we have considered electronic population
dynamics, which we have shown can be well described by fully
linearized approaches. This is because electronic population oper-

RP

NR

GB SE ESA

Fig. 7: The six double-sided Feynman diagrams used to represent the
multi-time correlations functions that contribute to the 2D optical spec-
trum. The coloured lines signify the occupied electronic subspace for
each propagation path ( ) during each time interval (t1,
t2 and t3), with black corresponding to the ground state, |g〉 , red to the
subspace containing single excitations, |e〉, and blue to the subspace
containing double excitations, |ee〉. The coloured circles represent the
application of the dipole operator, where the brown circle creates an ex-
citation while the green circle removes one. Figure adapted from
ref. [45].
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ators are diagonal and so their time-evolution is well approximat-
ed by considering only the average electronic path associated with
the forward and backward propagators, . To
calculate optical spectra, correlation functions involving the elec-
tronic transition dipole operator must be computed. Because this
operator is not diagonal (i.e. it connects the uncoupled electronic
subspaces containing different numbers of excitations, commonly
referred to as excitons), its time-evolution is best described using
partially linearized approaches,[46,47] where the distinct subspace
dynamics associated with the forward and backward electronic
propagators can be treated separately. The partially linearized ap-
proach based on spin mapping is called spin-PLDM.[26,27]

A key advantage of partially linearized approaches over their
fully linearized counterparts (or alternative approaches such as
surface hopping) is that they can also be used to compute multi-
time correlation functions required for nonlinear ultrafast spec-
troscopy,[45,48] such as pump–probe and 2D optical spectra.

The various multi-time correlation functions that contrib-
ute to these spectra are illustrated in Fig. 7 by their Feynman
diagrams.[44] While the rephasing (RP) and non-rephasing (NR)
signals can be separated in an experiment, the different Liouville-
space pathways associated with the ground-state bleach (GB),
stimulated emission (SE) and excited-state absorption (ESA)
cannot. Because these pathways are evaluated independently of
each other in our approach, the final signal can be decomposed
into sums and differences of various mechanistic contributions,
offering further insight beyond what can be obtained directly from
experiment.

Fig. 8 shows the pump–probe spectra for FMO at T = 300 K
for different t

2
delay times. The fact that a static approximation

(in which the nuclei do not evolve during the entire simulation)
is unable to correctly reproduce the qualitative features of the
spectra illustrates the importance of including nonadiabatic ef-
fects in describing nonlinear ultrafast spectroscopy. In contrast,
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Fig. 8: The pump–probe spectra for the seven-state FMO model at
T = 300 K, calculated for different t2 delay times. The top row gives the
full spectra, whereas the bottom row gives the individual contributions
calculated with spin-PLDM. Numerically exact results are computed
using HEOM.[36] Figure adapted from ref. [45].
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Numerically exact results are computed using HEOM.[36]

spin-PLDM accurately reproduces the pump–probe spectra. By
separating the full signal into its various Liouville-space path-
way components we can obtain a better understanding of the t

2
dependence of the signal. For example, the GB signal is inde-
pendent of the delay time, while although the initial SE signal is
identical to GB, in the large t

2
limit it corresponds to fluorescence

from the lowest-energy singly-excited electronic states (in accor-
dance with Kasha’s rule). The ESA signal is similar but originates
from absorption into the higher-energy unoccupied states.

2D optical spectra offer additional information compared
to the pump–probe, such as the couplings between the various
electronic states. Spin-PLDM can also be used to simulate these
results (Fig. 9), where it reproduces all of the key features of the
quantum-mechanical benchmark for the same FMOmodel. These
positive results suggest that, given a realistic Hamiltonian, our
approach can be used to interpret and better understand experi-
mental spectroscopic results.

4. Outlook
In this article, we have shown that the spin-mapping framework

can be used to obtain accurate predictions of nonadiabatic dynam-
ics. The method is based on classical trajectories, which provide
interpretations of reaction mechanisms and are computationally
affordable also for large systems. We have applied the method to
simulate ultrafast population dynamics, either initiated in an excited
state or driven by a strong laser field, as well as nonlinear spectra.

All of the examples given above were found to be in good
agreement with fully quantum benchmark calculations. In par-
ticular, the method can dramatically improve upon standard
approaches based on mean-field, static, Markovian or rotating-
wave approximations. In future work, we will apply the method
to larger andmore complicated systems including anharmonicity,
for which it is not feasible to employ fully quantum calculations.

Finally, we point out that one can go beyond the classical ap-
proximations of spin-mapping dynamics by representing the elec-
tronic state by a path integral of spins rather than a single spin.[50]
This path-integral version of the method is able to properly de-
scribe wavepacket splitting and other examples of entanglement
between the system and the environment, and is free from the pre-
viously observed overcoherence problems in surface hopping. As
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well as being a useful method in its own right, the spin-mapping
concept therefore also provides a foundation for the development
of improved theories of nonadiabatic processes.
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