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Abstract: The computer-assisted design of new chemical entities has made a leap forward with the develop-
ment of machine learning models for automated molecule generation. The overarching goal of this conceptual
approach is to augment the creativity of medicinal chemists with a machine intelligence. In this Perspective we
highlight prospective applications of “de novo” drug design and target prediction, aiming to generate natural
product-inspired bioactive compounds from scratch. A virtual chemist transforms pharmacologically active natu-
ral products into new, easily synthesizable small molecules with desired properties and activity. Computational
activity prediction and automated compound generation offer the possibility to systematically transfer the wealth
of pharmaceutically active natural products to synthetic small molecule drug discovery. We present selected
prospective examples and dare a forecast into the future of natural product-inspired drug discovery.
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1. Introduction
Revitalizing the concept of natural product-inspired drug

discovery presents a unique opportunity for future healthcare.
Evidently, natural products have traditionally inspired chemists
and filled the industry pipelines.[1]Approximately half of the new
drugs approved by the U.S. Food and DrugAdministration (FDA)
are of natural origin or natural product-derived synthetic com-
pounds.[2] For example, marine natural products are of particular
interest as anticancer and antiviral agents, with several approved
drugs.[3] Similarly, certain edible algae have recently been identi-
fied as sources of potential anti-obesity agents.[4]However, despite
their unrivalled appeal for pharmaceutical discovery as a source of
inspiration, natural products as drugs have to some degree fallen
into disgrace in the medicinal chemistry community because of
supply problems (ecological sustainability), partially lengthy and
costly total syntheses (economical sustainability), and an often
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the underlying machine learning models. The first applications
of generative deep learning (chemical language model) to natural
products were published in 2018.[25] Several novel nuclear hor-
mone receptor modulators with micromolar to nanomolar activity
were obtained. Selected recent examples of prospective studies
aiming to ‘scaffold hop’ from natural products to isofunctional
synthetic molecules are compiled in Fig. 2. Of note, in each case,
only a very small number of known bioactive natural products
(one to six molecules) served as design template(s) for rule-based
compound construction (Fig. 2a–c), or deep generative models
(Fig. 2d), respectively.

Two independent design runs with DOGS software, taking
either valerenic acid (1) or dehydroabietic acid (2) as design tem-
plate, resulted in the identical computer-generated molecule 3.[26]
This observation highlights the scaffold hopping capability of
rule-based molecular design. Target prediction with SPiDER soft-
ware[27] predicted retinoid X receptor (RXR) agonism for the two
natural products and the de novo molecule. Tetrahydroindole de-
rivative 3 was obtained in a microwave-assisted two-step synthe-
sis. Full dose-response analysis revealed low micromolar potency
of the natural product templates and de novo generated compound
3 on all three RXR subtypes.

In an attempt to morph structurally more intricate natural
products to small synthetic mimetics DOGS software was ap-
plied to the marine natural product marinopyrrole A (4), which
led to computer generated molecule 5.[28] Compound 5 was ob-
tained in a two-step synthetic route, as suggested by the design
software. Target prediction suggested cyclooxygenase-1 (COX-
1) inhibition as a hitherto unknown activity of the anticancer
agent marinopyrrole A and the de novo molecule. In vitro test-
ing confirmed compounds 4 (IC

50
= 7.7±3.9 μM) and 5 (IC

50
=

0.10±0.05 μM) as direct COX-1 inhibitors. Of note, molecule 5
inhibited COX-1 with low-nanomolar potency in platelets (IC

50
=

0.009±0.001 μM). This de novo designed natural product mimetic
preferentially inhibits the biosynthesis ofCOX-1-derived products
in human platelets and monocytes. Compound 5 behaved similar
to indomethacin with regard to COX-1 inhibition in platelets and
showed greater COX-1 selectivity. The unique binding mode of
this de novo generated compound was confirmed by X-ray struc-
ture determination of the ligand-enzyme complex. This example
demonstrates the applicability of ligand-based molecular design
to practical natural product-inspired medicinal chemistry.

In another study, the structurally complex natural product
(–)-englerinA (6), a known inhibitor of transient receptor potential
(TRP) cation channels, served as design template for DOGS.[29]
Using two different computational scoring methods (pharmaco-
phore-based and shape-based), two different de novo generated
moleculeswere prioritized for synthesis. Compounds 7 and 8were
afforded in 3-step and 2-step synthetic protocols, respectively, as
suggested by the software. Activity determination confirmed the
natural product and the computer-generated molecules as potent
inhibitors of TRPM8 (K

i
= 0.2–0.3 µM). Importantly, the chemical

constitution of the natural product templates used for rule-based
de novo design served as the only reference information for au-
tomated ligand-based molecule construction. This computational
approach might, therefore, prove particularly useful in “low-data”

unknown molecular mode of action (scientific sustainability).[5]
Advances in computer-assisted drug discovery, spurred in part by
stellar method development in both machine learning (as a subdo-
main of ‘artificial intelligence’) and biotechnology,[6,7] bear prom-
ise to overcome some of these limitations.[8,9] In this Perspective
we highlight the ability of ligand-based machine learning ap-
proaches to generate new chemical structures from scratch by
molecular ‘de novo’ design, and explain how these tools can be
used to obtain natural product-inspired drug-like chemical enti-
ties (Fig. 1). Selected retrospective and prospective applications
illustrate the feasibility of this innovative drug design concept as
an amalgamation of traditional and modern medicinal chemistry.

2. Molecular de novo Design
Molecular ‘scaffold hopping’ aims to identify pairs of mol-

ecules that havemarkedly different chemical structures but share a
certain function of interest, e.g. binding to the same macromolec-
ular target.[10]De novo structure generation provides such sets of
structurally diverse molecules that have certain features in com-
mon.[11] In fact, automated de novomolecule construction enables
medicinal chemists to computationally access a virtually infinite
chemical space. Scaffold hopping by de novo design seems par-
ticularly suited for finding structurally novel hit and lead com-
pounds.[12] The approach ideally complements virtual chemical
library screening,[13] but requires synthesizing the computer-gen-
erated molecules.

Molecular design with machine intelligence includes both
rule-based and rule-free approaches.[14] Rule-based methods use
sets of molecular building blocks and chemical transformations
(e.g. virtual reaction schemes) for molecule construction. The
DOGS (Design of Genuine Structures) algorithm belongs to this
class of methods.[15] In contrast, rule-free ‘generative’ methods
sample new molecules from a learned statistical distribution of
the training data, which usually requires a large set of known
molecules.[16] Most of the contemporary generative approaches
build on deep neural networks.[17] Recurrent neural networks
with long short-term memory as ‘chemical language models’,[18]
variational autoencoders,[19] generative adversarial networks,[20]
graph neural networks,[21] and various other deep learning ar-
chitectures,[22] have been proposed for this purpose. Rule-free
and rule-based methods alike have been successfully employed
for prospective small molecule drug design, resulting in new
bioactive compounds.[23] Importantly, both contemporary de
novo methods deliver synthetically feasible molecular designs,
thereby overcoming a stigma of earlier approaches.[24] In contrast
to generative models, rule-based methods do not require large
sets of training data. These methods are applicable when only a
single active molecule (the ‘template’ molecule for ligand-based
de novo design) or a model of the binding pocket (for structure-
based de novo design) is known.

2.1 Generating Natural Product-inspired Molecules
with Machine Intelligence

Computational de novo design is increasingly employed for
automated small molecule construction, starting frommostly syn-
thetic small molecules as design templates or as training data for

Natural
products

Activity
prediction

Natural product-
inspired molecules

De novo
molecular design

Synthesis
Testing

Fig. 1. A natural product-in-
spired de novo molecular de-
sign process. Certain machine
learning methods integrate the
chemical construction (design)
and evaluation (activity predic-
tion) of the molecular design
into a single computational model
(dashed line).
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3. De-orphaning the Targets of Bioactive Natural
Products with Machine Intelligence

Targeted natural product-inspired drug discovery requires
the knowledge of the pharmacologically relevant macromolecu-
lar binding partners of the natural products. Numerous software
tools are available for target and activity prediction, ranging from
structure-based (e.g. docking) to ligand-based (e.g. substructure-,
pharmacophore-, shape-based) methods.[34] No method is perfect
but all have their individual sweet spot. One of themost successful
and widely applied tools is TIGER (Target Inference GEneratoR),
which has proven applicable to natural products.[35] The TIGER
algorithm works on the two-dimensional chemical structure
(chemical constitution) of the ligand and does not take the target
structure into account. It is thus applicable to a wide range of tar-
gets and ligands. Most target prediction tools, including TIGER,
were developed using small molecule reference data. Their pre-
diction accuracy typically suffers when applied to larger natural
product structures, e.g. macrocycles or peptides. Aiming to par-
tially alleviate this issue, one can virtually dissect the large natural
product into smaller portions and perform target predictions for
the resulting “drug-sized” fragments.[36] Fig. 4 shows three such
examples of new target identification with TIGER. Resveratrol
(9) is a small natural product, for which estrogen receptor beta
antagonism was predicted and experimentally confirmed (K

i
= 0.4

µM).[37] For the medium-sized anticancer depsipeptide doliculide
(10) the software revealed prostanoid E receptor EP3 antagonism
(IC

50
= 16 ± 7 nM, K

B
= 6 nM).[38] For the polyketide archazolide

A, a known inhibitor of V-ATPase, farnesoid X receptor (FXR
agonist, EC

50
= 0.2 µM) and other hitherto unknown targets could

be identified.[36]
Aside from providing a straightforward access to target and

activity prediction for large natural products, fragment-based
prediction sometimes points to the most important function-
conveying substructural moieties (magenta colored parts in Fig.
4), which can be useful for chemical derivatization and guided
optimization.

3.1 Revealing Targets of Complex Natural Products:
A Prospective Study

The marine natural product (–)-zampanolide 20 is a micro-
tubule-stabilizing antiproliferative macrolide from the Togan
sponge Cacospongia mycofijensis (Fig. 5).[39] Its total synthesis
was achieved in 2012,[40] and several structural analogues have
been synthetically obtained ever since.[41] The unmodified natural
product (12) potently inhibits the growth of different human cancer
cells in vitrowith nanomolar IC

50
values, whereas its synthetic de-

situations that are restrictive for de novo drug design with data-
hungry generative deep learning.

Using a generative approach (chemical language model) for
natural-product inspired molecular design, computer-generated
compound 9 was obtained by 2-step synthesis, and experimen-
tally confirmed as a weak pan-RXR partial agonist (EC

50
=

20–30 µM, 6–10 fold receptor activation).[30] The importance of
this result lies in the fact that only six natural products (known
RXR agonists) were used to bias the generative chemical lan-
guage model, and no explicit target prediction was performed.
The machine intelligence implicitly captured the structural re-
quirements of RXR agonists and ranked the de novo generated
molecules.

2.2 Case Study: Designing Nucleoside Analogs with
a Chemical Language Model

In light of the urgent need for novel antiviral therapeutics, de
novo design may play a decisive role for future rapid hit and lead
identification. To provide another example of generative de novo
design, we targeted RNA-dependent RNA polymerase (RdRp)
of the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2),[31] aiming to obtain ideas for new SARS-CoV-2 RdRp
inhibitors. For this purpose, we trained a generative chemical lan-
guage model.[32] In the first step, a generic model was obtained
by learning the chemical syntax of a large set of known, bioactive
druglike compounds. In the second step, this model was biased
toward nucleoside analogues acting as SARS-CoV-2 RdRp in-
hibitors (Fig. 3a).[33] Newmolecules were sampled from this fine-
tuned model (Fig. 3b).

These de novo generated structures contain several well-
known substructures of RdRp inhibitors, but also some innova-
tive moieties. This set of computer-generated molecules, like all
molecular de novo designs, should serve as inspiration rather than
elaborated lead structures because of certain limitations of the
approach. In this particular example, no background information
about nucleoside interaction in RNA and the mechanism of RdRp
inhibition was considered during neural network training. Neither
target selectivity, pharmacokinetic and -dynamic properties, nor
the synthesizability of the designs were explicitly considered.
Consequently the suggested molecules will benefit from careful
checking by human experts and other computational tools. The
selected designs then have to be synthesized and tested before any
claim of pharmacological activity can be made. Similar consider-
ations should be taken into account whenever employing molecu-
lar de novo design methods.
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rivative desTHP-(–)-zampanolide (13) is >100-fold less potent.[40]
In contrast to 12, 13 shows no measurable binding to stabilized
microtubules up to concentrations of 25 µM (unpublished data).
We took this information as a starting point to identify potential
human drug targets of compound 13. Based solely on the two-
dimensional structure of compound 13, TIGER software (version
16.10) suggested cholecystokinin receptor B (TIGER score =
90), N-formyl peptide receptor 2 FPR2 (TIGER score = 24.5),
and prostanoid receptor EP3 (TIGER score = 22.3) as the most
confidently predicted targets. The suggestion of FPR2 seemed
particularly interesting because of its vital role in cell differen-
tiation and chemotaxis.[42] Experimental validation corroborated
compound 13 as a partial agonist of FPR2 in vitro (75% max.
receptor activation, EC

50
= 5±1 µM, Fig. 6).[43] This prospective

example positively advocates the use of machine learning models
for ligand-based target prediction and ligand ‘de-orphaning’.

4. Conclusions and Outlook
Computational de novo molecular design has proven value

for generating reasonable chemical structures. These computer-
generated molecules provide working hypotheses for chemical
synthesis and experimental testing. Concluding from several suc-
cessful prospective applications to natural products, this approach
seems suited for finding synthetic analogues and mimetics of bio-
active natural products. Both rule-based and rule-free machine
learning methods for de novo structure generation can be used for
this purpose. Remaining challenges are the structural complexity
of certain natural products and the functional relevance of certain
substructural elements, e.g. carbohydrate moieties, among others.
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Also, important activity-determining structural features, e.g., ste-
reocenters, are insufficiently accounted for by the currently avail-
able ligand-based de novo design methods.

Recently, there have been attempts to integrate computational
molecule construction and activity prediction into a single genera-
tive model. These computational models, if proven successful in
diverse prospective settings, will be able to automatically generate
new chemical entities with desired properties and biological activ-
ity, without the need for explicit activity prediction. Certain deep
learning approaches have already been shown applicable in this
regard.[44] Geometric deep learning techniques allow to explicitly
consider three-dimensional chemical features for model building.[21]
However, this approach has not been applied to natural products yet.
A further area of development is the combination of deep learning
with a rule-based molecule construction process, thereby allowing
chemists to explore the virtual chemical space that is accessible with
the molecular building blocks that are readily available in the labo-
ratory.[45] In the near future we expect to see fully automated labo-
ratories implementing design-make-test-optimize cycles,[46] thereby
enabling the full exploration of the structural and functional diver-
sity of natural products for de novo design. According to theWorld
Health Organization, infectious diseases represent a leading global
public health threat in the 21st century.[47]At the same time, popula-
tions are growing and ageing owing to successes against infections.
This situation paradoxically raises the risk of developing chronic
diseases.[48] The proposed drug design approach could enable a re-
naissance of natural product-inspired pharmaceutical research by
amalgamating modern medicinal chemistry with generative artifi-
cial intelligence. This matchless setting will alleviate some of the
limitations of traditional natural product-based drug discovery, and
harness the healing power of naturally evolved solutions for future
synthetic medicines.
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THP-(–)-zampanolide (13). Data shown from n = 2 independent experi-
ments.
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