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Abstract: Similar drug molecules often have similar properties and activities. Therefore, quantifying molecular
similarity is central to drug discovery and optimization. Here I review computational methods using molecular
similarity measures developed in my group within the interdisciplinary network NCCR TransCure investigating
the physiology, structural biology and pharmacology of ion channels and membrane transporters. We designed
a 3D molecular shape and pharmacophore comparison algorithm to optimize weak and unselective inhibitors
by scaffold hopping and discovered potent and selective inhibitors of the ion channels TRPV6 and TRPM4, of
endocannabinoid membrane transport, and of the divalent metal transporters DMT1 and ZIP8. We predicted
off-target effects by combining molecular similarity searches from different molecular fingerprints against target
annotated compounds from the ChEMBL database. Finally, we created interactive chemical space maps reflect-
ing molecular similarities to facilitate the selection of screening compounds and the analysis of screening results.
These different tools are available online at https://gdb.unibe.ch/tools/.
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1. Introduction
The biological activity of small molecule drugs primarily de-

pends on their complementarity to their targets, usually proteins,
following the well-known lock-and-key principle, implying that
similar drug molecules often have similar biological activities.[1,2]
A broad variety of computational methods can be used to predict
either the complementarity of potential drug molecules to their
protein target, typically by docking, or the molecular similarity
between potential drugmolecules, most often usingmolecular fin-
gerprints.[3–5]Although only moderately reliable, such predictions
are extremely useful in drug discovery to focus experiments on
small sets of test compounds, for example by selecting them from
commercial catalogs of millions of screening compounds such
as those accessible at the ZINC database,[6] and to guide hit and
lead optimization by analog design.[7] Computational models can
also predict physico-chemical[8] andADME-Tox[9,10] properties as
well as possible off-targets,[11–13] typically through multiple com-

parisons with drug molecules of known properties and activities
as collected in databases such as ChEMBL and PubChem.[14,15]
Here I review molecular similarity measures developed in my
group for virtual screening, target prediction and chemical space
visualization, and how they were used to discover and optimize
inhibitors of ion channels and membrane transporters within the
NCCR TransCure project.

2. Drug Discovery
Our virtual screening approach for TransCure was designed in

the context of identifying apotent and selective inhibitor ofTRPV6,
a calcium channel initially discovered by Matthias Hediger and
a putative cancer target for which no structural information was
available, but for which several weak inhibitors (IC

50
~ 100 µM)

had been described.[16–20] Our hypothesis was that these weak
inhibitors must be partly correct but their scaffold was probably
not the right one. Among the many options to compute molecular
similarity,[2] we focused on molecular shape and pharmacophores,
which is one of the most useful concepts in drug discovery because
it enables scaffold-hopping and the discovery of new compound
series.[21,22] Considering the weak inhibitors available as seed mol-
ecules, this approach appeared as a good option to identify differ-
ent and potentially better scaffolds for this target.

The gold standard for molecular shape and pharmacophore
comparison, then and now, is the ROCS score developed by the
software company Open Eye.[23] The ROCS algorithm searches
for the best overlay between 3D-molecular models of a seed and
a querymolecule in different conformations, quantifying the over-
lay of molecular surfaces either in terms of pure shape, or in terms
of pharmacophore by assigning properties to the molecular sur-
face. We developed a simpler version of this approach comparing
only the lowest energy conformers of seed and query predicted
by the 3D-builder CORINA[24] based on a modified version of
the ligand overlap score.[25] Our extended ligand overlap score
(xLOS)was calculated from the relative positions of hydrophobic,
hydrogen-bond acceptor and hydrogen-bond donor atoms as three
separate categories and was minimized by optimizing the relative
position of seed and query. Benchmarking using a reference set[26]
showed that xLOS performed as good as ROCS and better than
a 3D-pharmacophore fingerprint[27] or a simple Daylight binary
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group allowed to solve X-ray and cryo-EM structures of several
TRPV6 inhibitor complexes including cis-22a (PDB 7K4B) and
3OG (PDB 7K4D). These different structures showed that our
inhibitors plug the open pore of TRPV6 and convert the channel
into a nonconducting, inactive state.[33]

In a similar approach in collaboration with Hugues Abriel, we
searched for selective inhibitors of TRPM4, a monovalent cat-
ion channel involved in heart diseases and cancer.[34,35] We tested
xLOS analogs of known cation channel blockers such as flufenam-
ic acid[36] using a fluorescent sodium uptake assay for TRPM4 in
transfected HEK293 cells. These studies led to the identification of
CBA (IC

50
= 1.5 ± 0.1 µM) and NBA (IC

50
= 0.4 ± 0.3 µM) as the

first potent and selective TRPM4 inhibitors,[37,38] with interesting
species specific differences in their activities.[39]We have also used
xLOS in virtual screening campaigns to optimize inhibitors of the
iron transporter DMT1 such as the pyrazolyl-pyrimidine 3 (IC

50
=

0.17 µM),[40,41] however, in this case detailed studies showed that
the literature seed compound as well as our inhibitor 13 (IC

50
= 1.1

± 0.01 µM) acted indirectly by iron chelation, leaving bis-thioureas
such as 2 (IC

50
= 0.29µM) as the only class of potent inhibitors for

DMT1 as confirmed by X-ray crystallographic studies.[42,43]
X-ray crystallographic studies were also critical in confirming

the binding mode of Aurora A kinase inhibitors 6 (IC
50
= 2.3 µM,

PDB 4ZS0) and 9 (IC
50
= 2 ± 0.5 nM, PDB 4ZTR) discovered by

an xLOS driven screening campaign.[44] In this study, we found

substructure fingerprint[5] in a virtual screening benchmark, and
performed significant scaffold-hopping (Fig. 1).[28]

Starting with the chemical structure of five weak TRPV6 in-
hibitors described in the literature,[18] we used xLOS similarity to
select 133 test compounds in the catalog of ~800,000 drug-like
molecules of a commercial provider. The activity assays were per-
formed in the group of Matthias Hediger by monitoring calcium
uptake using a fluorogenic calcium dye in a stably transfected
HEK293 cell line expressing TRPV6,[29] and revealed five hit
compounds with IC

50
~20 µM. In particular inhibitor 8 (IC

50
= 31

µM) from a (4-phenylcyclohexyl)piperazine scaffold had a high
xLOS similarity to the prolinol type seed inhibitor 1 (IC

50
= 90

µM). Further optimization by purchasing an additional 90 ana-
logs, again selected by xLOS similarity, confirmed the activity of
this scaffold, and provided a first potent inhibitor, which turned
out to be most active as the 1,4-cis cyclohexane diastereomer cis-
11a (IC

50
= 1.0 ± 0.11 µM). This diastereoselective inhibition was

confirmed with additional analogs obtained by synthesis, which
led to the optimized inhibitor cis-22a (IC

50
= 0.32 ± 0.12 µM).[30]

Further studies focusing on electrophysiology and on introducing
structural features from the natural product capsaicin to mitigate
off-target effects led to the photoswitchable Z-9e (IC

50
= 1.7 ±

0.4 µM) only active as the Z-isomer,[31] and to the more potent
and selective TRPV6 inhibitor 3OG (IC

50
= 0.082 ± 0.004 µM)

(Fig. 2).[32] A collaboration with Alexander Sobolevsky and his
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Fig. 1. The ligand overlap score xLOS for similarity between a seed and a query molecule. a) Equation and principle of comparing seed and query
molecule by scoring atom-pair distances using xLOS. b) Benchmarking study comparing xLOS with ROCS, a Daylight substructure fingerprint (Sfp)
and a 3D-pharmacophore fingerprint (3DXfp). c) Scaffold hopping of xLOS is demonstrated in the DUD-E benchmarking set by the fact that the
xLOS score (x-axis) is only very weakly correlated with the Tanimoto similarity of substructure fingerprint (y-axis).
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effects. Following early reports such as PASS,[50,51] SEA[52] and
OCEAN,[53] numerous approaches exploiting various statistical
methods have been reported, a few of which have been made ac-
cessible online.[12,13,54]

Most target prediction methods exploit compound–activity
databases by measuring molecular similarity using a substructure
molecular fingerprint such as the extended connectivity fingerprint
ECFP4, originally developed in the 1960’s as the Morgan finger-
print.[55,56] In our own approach to the problem, we used nearest-
neighbor searches combining ECFP4 with several other molecular
fingerprints comparing molecules by composition[57] and molecu-
lar shape and pharmacophores,[58] as well as fusion fingerprints.[59]
The system, called polypharmacology browser (PPB),[60] searched
for similarity of a querymolecule toChEMBLcompounds annotat-
ed with any of 4,613 possible bioactivities on single protein targets,
cell lines and organisms. When tested with our TRPV6 inhibitor
cis-22a, PPB successfully predicted five of twelve experimentally
verified off-targets, and none of twelve experimentally verified
inactive off-targets, which was comparable to the performance of
several other off-target prediction tools available online (Fig. 3a).

We later reported a second, modified polypharmacology
browser PPB2, which used the activity data of 344,163 ChEMBL

that the thiazolidinone nucleus of the potent and highly selective
inhibitor 9 did not exhibit any significant thiol reactivity despite
being flagged as a potential pan-assay interference substructure
(PAINS).[45]A similar lack of thiol reactivity and a very low tox-
icity were observed during the preclinical development of a thia-
zolidinone series identified in collaboration with Jürg Gertsch in
an xLOS-driven screening campaign searching for inhibitors of
endocannabinoid transport,[46,47] which is being further developed
by Synendos Therapeutics.[48]

3. Target Prediction
To be reasonably useful, small molecule modulators should

not only be potent on their intended target, but also show good
selectivity against other targets, including possible close iso-
forms as well as safety panels containing known problematic
side activities.[49] This polypharmacology is usually unintended
but very frequent and must be addressed as soon as possible
in the course of a discovery project. Thanks to the availability
of open access databases such as ChEMBL listing millions of
compounds and their associated bioactivity data,[14] one can use
molecular similarity to compare any hit compound with known
bioactive molecules and deduce the probability of off-target

Fig. 2. Seed compounds (blue) and inhibitors discovered in screening programs initiated by virtual screening using the shape and pharmacophore
similarity algorithm xLOS. Compound numbering of the original publications was preserved.
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lysophosphatidic acid acyl transferase beta (LPAAT-β), a predic-
tion which was verified experimentally. Interestingly, the key mo-
lecular similarity comparison in this project was made by XFP, a
molecular shape and pharmacophore similarity fingerprint,[58] and
was missed by other target prediction models.

4. Visualizing Chemical Space
During applied projects such as those performed in the NCCR

TransCure, the selection of test compounds guided by virtual
screening engages substantial time and resources and determines
project outcome. To enable better decision making in this critical
early project phase, we have developed interactive tools to per-
form rapid similarity searches in large databases such as ZINC
using various molecular fingerprints, and to visualize the content
of the source database or the selected subsets in form of chemical
space maps. In both cases our interactive tools display chemi-
cal structures, which is essential to evaluate and compare mol-
ecules. With such tools, various options for virtual screening can
be considered and possible sets of test molecules can be compared
against each other and against the entire source database.

compounds annotated with 1,720 different single protein targets.[61]
In this second version, we used only three different fingerprints but
investigated several models for target prediction including nearest
neighbor (NN) searches with the different fingerprints, Naïve-Bayes
(NB)machine learning and a deep neural network (DNN).The recall
and precision of the off-target prediction was strongly influenced by
the ECFP4 similarity of the query molecule to the target annotated
ChEMBL compound, as well as by the target class. Among the dif-
ferent models, the DNN as well as a combination of NN and NB
machine learning performed best. When tested with off-targets of
cis-22a, PPB2 performed significantly better than PPB, with the
DNN performing best by being able to predict eight of the twelve
active off-target and none of the inactive ones (Fig. 3b).

Additional insight into the performance of PPB2 compared to
other online prediction tools was provided by analyzing the details
of a target identification project for a highly cytotoxic triazine
series (IC

50
~20 nM) identified in a phenotypic assay for angio-

genesis inhibition and initially thought to target kinases.[62] In the
absence of any measurable activity in whole kinome profiling, we
followed a suggestion of PPB2 that this compound might inhibit

a)

b)

Fig. 3. Predicting off-targets of the TRPV6 inhibitor cis-22a (structure shown in Fig. 2) by molecular similarity. (a) eight experimentally verified active
(left panel, ≥50 % inhibition at 10 µM) and inactive (right panel, <50 % inhibition at 10 µM) targets and active (green) predictions by various molecular
fingerprints in PPB (first eight columns) and other online prediction tools. (b) Same as (a) for PPB2.
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Our fastest and most versatile molecular similarity search
tool is the multi-fingerprint browser for the ZINC database.[63]
This tool offers a choice of four different molecular fingerprints
to retrieve a list of analogs of any seed molecule, and to cluster
the results by similarity. By contrast to typical online similarity
searches such as those at the website of ChEMBL and PubChem
which use only a single, substructure-based similaritymethod, our
search tool additionally offers fuzzy comparisons usingMolecular
Quantum Numbers (MQN), a set of 42 descriptors counting dif-
ferent types of structural features,[57] and the SMILES fingerprint
SMIPF, which counts the occurrence of 34 different characters in
the SMILES notation of molecules.[64] Such fuzzy searches allow
very substantial scaffold hopping[21] and can enable surprising and
counter-intuitive analog discoveries.[65,66]

To visualize collections of molecules, often referred to as chem-
ical spaces,[67,68] we produce 2D- or 3D-maps organized by mo-
lecular fingerprint similarity where each point corresponds to one
or several molecules. Principal component analysis (PCA) is well
suited to produce maps from MQN and SMIFP fingerprints, for
which the first two principal components usually cover more than
70% of data variability. For binary substructure fingerprints such as
ECFP4 which have very high dimensionality, we produce the maps
by applying PCA to an N-dimensional secondary molecular finger-
print obtained by computing similarities to N different reference
compounds using the original fingerprint, which results in a strong
dimensionality reduction.[69,70] PCA and similarity PCA maps pro-
vide nice overviews of large molecular databases such as the gen-
erated databases (GDBs)[71,72] PubChem,[73] or the RCSB Protein
DataBank,[74] and can be inspected with interactive Java applets in
2D[75] or 3D,[38,76,77] or with the application Fearun.[78] Fearun can
displaymillions of datapoints in 3Dwithin a web-browser, and rep-
resentsmolecules inmillisecondwithout any server communication
using the drawing program Smilesdrawer.[79]This visualizationwas
adapted for a virtual reality 3D-chemical spacemap ofDrugBank, a
database containing thousands of small molecule drugs.[80]

Applying PCA and other dimensionality reduction methods
such as t-SNE[81] and UMAP[82] to high-dimensional molecular
fingerprint datasets usually creates images with uneven datapoint
density, which hides the bulk of the data in dense clusters and
draws attention to outliers. To overcome this limitation, we have
reported the tree-map (TMAP), a dimensionality reductionmethod
which organizes high-dimensional datasets in a 2D-tree connect-
ing approximate nearest neighbors, such that the density of points
is homogeneous over the entire map. TMAP largely outperforms
UMAP in terms of computation speed, maximum dataset size,
and preservation of nearest-neighbor relationships, and has been
exemplified with datasets from computer science, physics, chem-
istry, biology, and literature.[83] For molecular datasets, we usually
compute TMAPs usingMinHashed molecular fingerprints encod-
ing circular substructures (MHFP6)[84] or pairs of circular sub-
structures and the topological distances between them (MAP4).[85]
These molecular fingerprints outperform binary molecular fin-
gerprints such as ECFP4 in bioactivity benchmarks[86] and allow
fast determination of approximate nearest neighbors for TMAP
construction. As for the PCA maps discussed above, TMAPs are
displayed interactively in a web-browser using Faerun.

TMAPs representing various high-dimensional datasets are
accessible at https://tmap.gdb.tools/ and https://tm.gdb.tools/
map4/. TMAPs can provide unsuspected insights into large data-
sets, as recently exemplified by the analysis of natural products,
for which the TMAP showed that they separate in different groups
according to their origin as from plants, bacteria or fungi, which
implies that the origin of any natural product can be inferred from
its molecular structure (https://np-svm-map4.gdb.tools/).[87,88]
TMAPs provide useful project overviews, as exemplified here for
a discovery project in collaboration withMatthias Hediger, target-
ing the divalent metal transporter ZIP8, a transporter implicated

in various diseases but for which no previous pharmacology was
available.[89–91] In this project, we purchased a set of diverse frag-
ment-like[92] molecules belonging to the fragment subset FDB-
17[93] of the generated database GDB-17.[94] A limited screening
using a transiently transfected cell line was sufficient to identify a
hit series exemplified by the tricyclic indole (S)-3 (IC

50
= 17.2 ±

3.8 µM). A subsequent result analysis using TMAP showed that
the screening set used for this discovery was not truly representa-
tive of the original FDB17 database and represented a selection
typical of commercial fragment series, and provided useful hints
for further screening efforts (Fig. 4).[95]

5. Conclusion and Outlook
This review presented methods developed in my research

group to use molecular similarity for drug discovery, target predic-
tion, and chemical space visualization and how they were used in
NCCRTransCure projects for which no structural information was
available on the protein targets. Transforming our computations
into successful experiments depended on awell-organized pipeline
to verify hit compound purity, structure and activity, on consistent
follow-up studies, on the intrinsic hit-rate of the selected protein
targets, and unavoidably also on chance. We currently keep im-
proving our methods to address further challenges such as the dis-
covery of bioactive peptides[95–98] and reaction informatics.[99–101]
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