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Secondly, metabolite annotation plays a central role since 
it bridges chemical analysis with biological interpretation. 
Nevertheless, it remains one of the main bottlenecks in the current 
biomarker discovery workflows due to the large degeneracy of 
signals obtained in electrospray ionization (ESI) and the difficulty 
to unequivocally assign the observed peaks. Annotation based on 
diverse and orthogonal parameters obtained thanks to separation 
techniques and MS(/MS) can be achieved not only through the 
in-house measurement of authentic standards but also through 
external repositories using both experimental and in silico-gen-
erated data.

The third major challenge for an improved coverage of the 
metabolome is the efficient treatment of data obtained from multi-
ple analytical platforms. Processing and analyzing these datasets, 
integrating the results at the biological level, and attempting to 
establish relationships between the discriminant features are key 
aspects of future research. 

In the present article, we will cover these three major challeng-
es by first giving an overview of the main separation techniques 
used in MS-based metabolomics. We will then emphasize the rel-
evance of combining different separation modes for MS-based 
metabolomics to obtain a more complete vision of the biological 
phenomena under study, finishing by an overview of the data min-
ing approaches making it possible. 

2. Liquid Chromatography
Due to its versatility, robustness and popularity within the an-

alytical chemistry community, LC has become the leading sepa-
ration technique in metabolomics. By providing a separation step 
that increases resolution and decreases matrix effects before MS 
detection, LC has remarkably contributed to improving the value 
of the information retrieved in metabolomics.[1,2]

The last two decades have witnessed the rise and spread of 
UHPLC conditions, allowing fast separations with a large peak 
capacity thanks to the use of shorter columns, smaller particles, 
and systems able to cope with the elevated back pressures thereby 
generated.[3,4] LC separates complex mixtures based on the differ-
ent interactions of each component with the stationary and mobile 
phases. Thus, the nature of such LC elements will determine the 
driving mechanism of the separations. In LC-based metabolom-
ic applications, metabolites are most commonly separated on the 
basis of their polarity. Hence, different separation modes have 
been adopted in this context, with reversed-phase liquid chroma-
tography (RPLC) and hydrophilic interaction liquid chromatog-
raphy (HILIC) being the most relevant modes but also including, 
although to a lesser extent, mixed-mode chromatography (MMC), 
ion-exchange chromatography (IEC), and normal-phase liquid 
chromatography (NPLC).

RPLC best fits applications in which moderately to highly ap-
olar compounds must be separated. Due to its ruggedness, good 
retention time repeatability and straightforward method develop-
ment, it remains the first option for many practitioners.[5] In most 
cases, compounds are eluted using MeCN:H

2
O gradients con-

taining low concentrations of formic acid. In addition to classical 
stationary phases such as C18, other chemistries and endcappings 
presenting a certain polar character (and, thus, improving the re-
tention of more hydrophilic compounds), such as Waters HSS T3, 
have become very popular. RPLC including isopropanol in the 
mobile phase is also a preferred technique for lipidomic profiling. 
RPLC coverage can be extended to more polar or charged com-
pounds by means of two major approaches: analyte derivatization 
and the use of ion-pairing agents. In the former, polar analytes 
are linked to a derivatization agent, which renders them more hy-
drophobic, thus making their retention and separation possible 
under RPLC conditions. In the latter, an amphiphilic ion-pair re-
agent is added to the separation to facilitate the interactions be-
tween the ionic analytes and the hydrophobic stationary phase. 
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1. Introduction
Metabolomics is one of the most suitable techniques for as-

sessing biochemical processes at the phenotype level. While 
tracking a limited number of metabolites can be sufficient for 
diagnostic purposes, an extended set of compounds may be nec-
essary to map and understand biochemical networks involved in 
complex or poorly known biological processes. Untargeted me-
tabolomics has rapidly developed in the past ten years, but it still 
faces many challenges particularly those related to improving 
chemical coverage, metabolite identification, and data analysis 
and contextualization.

Firstly, untargeted monitoring of metabolites involves the 
detection of molecules of diverse chemical structures and phys-
ico-chemical properties, from very polar compounds (such as 
amino acids and sugars) to very apolar compounds (most li-
pids). Therefore, combining different analytical techniques with 
mass spectrometry (MS) detection is required to reach exhaus-
tive metabolite coverage of biological samples. Hence, in re-
cent years, research in metabolomics has seen the development 
of rapid, generic and high-resolution separation methods using 
ultra-high-performance liquid chromatography (UHPLC), super-
critical fluid chromatography (SFC) and capillary electrophoresis 
(CE), which can be combined to broaden the chemical space that 
can be observed.
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several LC modes are used to broaden the chemical space that can 
be covered by metabolomic experiments.[9] In this direction, the 
use of 2D chromatography should be a good candidate to combine 
the benefits of two orthogonal chemical selectivity types coming 
from different columns.[10] Nevertheless, a number of drawbacks, 
such as technical complexity, mobile phase compatibility, analy-
sis time and analysis speed in the second dimension, have notably 
hampered the broad adoption of such an approach.

Alternatively, a much more widespread approach involves 
independent chromatographic analyses followed by the use of a 
number of resources to merge their individual outputs. In such 
cases, the same set of samples is analyzed under different LC–MS 
conditions (Fig. 1) (chromatographic modes, ionization polarity, 
etc.) and the resulting data are combined and jointly interpret-
ed. The first and most straightforward option is the combination 
of orthogonal LC and ESI modes. For instance, the samples are 
run in RPLC with positive ESI, followed by a second sequence 
batch in which the samples are separated in HILIC conditions 
and ionized in the negative mode. This is a sensible combination, 
as some of the most relevant polar metabolites (such as those in-
volved in energy metabolism) bear negative charges. Although 
this combination is based on an educated choice, it presents a 
bias towards apolar, positively ionizable compounds and polar, 
negatively ionizable compounds. Therefore, more comprehensive 
and systematic methodologies must be developed.

With this goal in mind, several studies have been conducted 
to quantitatively determine the value of the chemical information 
gathered by each LC–MS method in a multimode acquisition en-
vironment. Our group has recently proposed an algorithm allow-
ing us to compare the performance of different LC–MS modes on 
a panel of benchmarking analytes.[11] This is done by means of a 
score assigned to the peak obtained for each compound on each 
of the analytical platforms. This score takes into account LC re-
tention, peak shape, peak intensity and signal-to-noise ratio. Five 
different LC–MS methods were compared: RPLC with positive 
and negative ESI, amide-based HILIC (aHILIC) with positive and 

Nevertheless, these approaches are not exempt from drawbacks, 
such as poor repeatability in the derivatization reactions or the 
contamination of MS by ion-pairing agents.

To increase metabolite coverage, HILIC appeared to be a nat-
ural alternative to complement the selectivity of RPLC.[6] In this 
case, more polar compounds can be successfully separated, com-
monly using MeCN:H

2
O gradients involving volatile additives to 

regulate pH and ionic strength, such as ammonium formate and 
acetate. Amide- and sulfobetaine-based zwitterionic stationary 
phases are the most widely used ones. While allowing the analysis 
of polar compounds, HILIC methods require a deeper knowledge 
of LC fundamentals and optimization, and longer equilibration 
times. Retention times are also less repeatable and reproducible, 
and harder to model. In regard to the analysis of polar compounds 
bearing carboxylate, phosphate and sulfate moieties, a common-
ly found issue is the loss of metabolites due to their adsorption 
on stainless steel surfaces. To minimize such problems, different 
options have been made commercially available, such as passi-
vating the surfaces using a medronic acid solution as a mobile 
phase additive or applying a low-binding coating to instruments 
and columns.

MMC is another LC mode that is slowly gaining momentum in 
metabolomics as manufacturers release new column chemistries.[7] 

It is based on the coexistence of several ligands or combinations of 
ligands/endcappings on the same column, thus enabling different 
modes of interaction between the analytes and the particle surface.[8] 

They present the advantage of simultaneously retaining metab-
olites with different properties by interacting with them through 
diverse mechanisms. Nevertheless, the complex and assorted na-
ture of the chromatographic processes concomitantly taking place 
in such columns requires a comprehensive method development 
process to ensure optimal performance.

Since each chromatographic mode will perform better when 
separating molecules within a certain polarity range, no single 
LC method can provide a complete overview of the whole me-
tabolome. This fact has led to the search for approaches in which 
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Fig. 1. An example of the 
complementarity achieved by 
combining several LC modes 
is shown. Some compounds 
poorly retained in RP (A) cannot 
be either qualitatively (because 
of lack of retention time) nor 
quantitatively (due to the extent 
of the ion suppression at the 
dead time) analyzed. Alternative 
LC methods showing comple-
mentary retention properties can 
thus be used. Amide HILIC (B) 
and zwitterionic HILIC (C) are 
two examples of this. Subplot D 
shows the position of each one of 
the compounds on the different 
m/z vs. retention time (RT) maps. 
In D, changes on the position of 
the same compound along the 
m/z axis are caused by different 
adducts detected with each tech-
nique. For A, B and C, the area 
of the bubbles is proportional 
to the intensity of each feature. 
Reproduced from ref. [2] with 
permission.  
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by designing a bevelled capillary tip. When full coverage of high-
ly polar and ionic metabolites must be attained, both ionic and 
cationic metabolites need to be analyzed in the CE-MS platform. 
Sheathless porous-tip interfaces and modified sheath-liquid (SL) 
interfaces are other promising candidates for the enhancement of 
coverage in anionic metabolic profiling, while the combination of 
low-pH separation conditions along with a fused-silica capillary is 
a robust method for cationic metabolic profiling.[25] A reliable in-
terface is also equally important. Ramautar et al.[26] and Boizard et 
al.[27] developed strategies for improving the sensitivity, reliability 
and stability of the MS interface, which led to enhanced metabo-
lite coverage. The former employed glioblastoma cell lines using 
a sheathless capillary interface to improve sensitivity and thus the 
overall coverage. In addition, Sweedler et al. employed a CE-ESI-
MS technique, which matches well to single-cell assays thanks to 
its low sample-volume requirements at the picoliter range and its 
low detection limits.[28] More precisely, Sweedler and co-workers 
detected intracellular metabolites from a single neuron using a 
field-amplified sample injection (FASI) CE-ASI-MS. Throughout 
this approach they achieved between 100- and 300-fold enhance-
ment in detection limit.

Remarkable contributions for the use of quality assurance and 
quality control (QC) samples, as well as for the identification of 
metabolites, have recently been made. McKibbin’s group demon-
strated the ability of CE-MS to analyze large cohorts with great 
robustness by including multiple samples, QCs and calibration 
standards in a single CE run by using a multiple-injection ap-
proach.[29] Drouin et al. proposed a generic CE-MS approach by 
performing normal and reverse-polarity CE separations to analyze 
596 metabolites, and more than 450 compounds were detected. 
A large database relying on the µ

eff
 was built, allowing for the 

straightforward annotation of detected features in biological sam-
ples (Fig. 2).[30] Mamani-Huanca et al. presented an annotation 
tool based on their in-source fragmentation pattern and incorpo-
rated it into CEU Mass Mediator.[31] They also established a 5% 
tolerance of relative migration time (RMT) for all compounds they 
measured, whereas 10% tolerance was established for compounds 
separated with EOF. More recently, interlaboratory work[32] in-
volving 20 different CE-MS platforms across 17 different labora-
tories assessed the reproducibility and identification capability of 
CE-MS by using µ

eff
 instead of RMT. It was demonstrated that the 

mismatch between experimentally measured µ
eff

 values and data-
base entries was much smaller compared with the use of RMT.

Multiple CE-MS protocols have been developed to support 
quantitative metabolomic measurements in a wide range of sam-
ples, including urine,[33] bacteria,[34] neurons[35] and the brain.[36] 

negative ESI, and zwitterion-based HILIC (zHILIC) with nega-
tive ESI. Since many metabolites can be detected on more than 
one LC–MS platform, the question arises as to which is the opti-
mal combination of methods yielding the best coverage with the 
smallest number of analyses. By using the scoring approach, we 
found that the most efficient combination of methods was com-
prised of zHILIC ESI-, aHILIC ESI+ and RPLC ESI+, which 
together were capable of covering 95% of all detected metabolites 
with acceptable analytical behaviour. Interestingly, adding the re-
sults from the remaining two analytical platforms only marginally 
increased the coverage rate while involving a remarkable increase 
in the analysis time.

In addition to chemical diversity, LC-based metabolomics 
must face the challenge of improving its sensitivity to cope with 
low-concentration metabolites and volume-restricted samples. 
Sensitivity enhancement in LC–MS can be achieved by working 
in the nano-ESI mode, which dramatically increases the ionization 
yield. Notwithstanding, nano-ESI requires flow rates far below 
those typically used in LC; thus, it has led to the use of chromato-
graphic columns with reduced internal diameters and eventually 
to the development of micro/nano-LC.[12,13] Such LC formats af-
ford a remarkable gain in sensitivity by using reduced flow rates 
(10–1000 nL/min) on small internal diameter capillaries (from 
10 µm for nano up to 1000 µm for micro) but at the expense of 
longer gradient times to retain adequate efficiency values under 
such operating conditions. Trapping columns are also commonly 
used in nano/micro-LC setups to load larger amounts of sample in 
the system without compromising the peak shape.

3. Capillary Electrophoresis
Arguably, capillary electrophoresis (CE) has been consid-

ered a less suitable technique for metabolomic analyses due to 
its technical challenges, and lower migration time reproducibili-
ty when compared to chromatographic techniques.[14–16] Among 
other reasons, CE presents technical challenges rendered to the 
fluctuations of electroosmotic flow (EOF) influenced by the coat-
ing of silica,[17] thus limiting its adoption. Remarkably, the issue 
of migration time variability has been successfully addressed in 
recent years using effective electrophoretic mobility (µ

eff
), allow-

ing the use of migration as a robust annotation and identification 
parameter.[18,19] Capillary zone electrophoresis (CZE), as the most 
popular mode of CE coupled to MS, is currently a mature analyt-
ical technique allowing the effective profiling of highly polar and 
ionizable compounds. A competitive advantage of CE-MS is the 
reduced influence of matrix effects. CE-MS is considerably less 
influenced by ion suppression thanks to the absence of leaking 
material and matrix build-up from a stationary phase. This results 
in avoiding the adverse effect on detector response due to reduced 
ionization efficiency for analytes of interest, resulting from the 
presence of species that compete for, or inhibit, their efficient ion-
ization.[20,21]

Compared to the more widespread LC-MS, CE-MS remains 
less popular in untargeted metabolomics due to a series of draw-
backs, such as sensitivity, CE-MS interfacing robustness and the 
lack of adapted solutions to deal with migration time variability. 
From an instrumentation and methodological standpoint, CE-MS 
in metabolomics has gone through a number of advancements 
aiming at helping to obtain a stable, reproducible and sensitive 
analysis. First, Soga et al. in Japan reported a method during 
which a few hundreds of charged metabolites were separated 
by cationic and anionic methods.[22–24] The separation and de-
tection of anionic metabolites requires CE separation in the re-
verse-polarity mode and ionization in negative ESI. Under such 
conditions, stainless steel needles have shown corrosion issues 
due to oxidation, and thus, only platinum needles are adequate 
to perform such analyses. Further improvements were made by 
Boizard et al., who enhanced the stability of the CE-MS interface 

Fig. 2. Schematic representation of migration order under normal and 
reverse polarities. Reproduced with permission from ref. [30].
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Kok et al. carried out a comparison study between CE-MS and 
HILIC-MS aimed at studying the main analytical parameters, in-
cluding metabolite coverage, when measuring anions in urine.[37] 
The authors reported that when they analyzed rat urine with 
HILIC-MS, approximately 1360 molecular features were detect-
ed compared to 347 features with CE-MS. More interestingly, 
approximately 203 molecular features were exclusively found 
when CE-MS was employed, which proves the selectivity capa-
bilities of this technique. The same team also studied the influ-
ence of various background electrolytes (BGEs) and SL additives 
to enhance metabolite coverage in the negative ionization mode.
[38] Their findings showed that triethylamine (pH = 11.7) in the 
BGEs and SL resulted in lower limits of detection and greater 
metabolome coverage than common negative ionization CE-MS 
methods, where ammonia buffers are used.

The many advantages of using CE-MS in metabolomics have 
been shown in the recent years specially in the context of its abil-
ity to cope with volume-restricted biological samples. Another 
strong potential of CE-MS is the ability to be a complementary 
separation technique in multi-platform setups allowing the com-
prehensive analysis of highly polar and charged metabolites, es-
pecially amino acids, carbohydrates and nucleotides.

4. Supercritical Fluid Chromatography
In addition to the use of LC and CE previously discussed, 

supercritical fluid chromatography (SFC) can also be considered 
a valuable alternative analytical strategy in the field of metabo-
lomics to improve metabolome coverage. Indeed, SFC offers ex-
cellent kinetic performance due to the low viscosity of the mobile 
phase and low environmental impact (the mobile phase is mostly 
composed of supercritical CO

2
).[39] In SFC, any type of stationary 

phase can be used (i.e. polar, apolar, or aromatic), while the mo-
bile phase is typically composed of supercritical CO

2
 (the latter 

is used above its critical point, temperature >31°C and pressure 
>72 bar), mixed with any type of organic solvent (from hexane to 
methanol) and some additives (water and salts). Since it is possi-
ble to use any type of stationary phase and mobile phase in SFC, 
this technique is highly versatile.[40] However, in common prac-
tice, a polar stationary phase is frequently used today in combina-
tion with a mobile phase composed of a mixture of CO

2
, methanol 

and additives. Under these conditions, the retention mechanism is 
based on polar interactions, including H-bond, dipole–dipole and 
ionic interactions.[41]

Since 2011, UHPLC-like instruments and columns packed 
with sub-2 µm particles have been introduced in SFC. This mod-
ern SFC approach has been described as UHPSFC, which stands 
for ultra-high performance supercritical fluid chromatography.[42] 
Moreover, thanks to the addition of a higher proportion of cosol-
vent in the mobile phase (up to 100%) and the addition of water 
(<5%), highly polar compounds can be successfully analyzed, and 
some applications also report the simultaneous analysis of lipo-
philic and hydrophilic substances in a single analysis, which is a 
significant advantage for metabolomic applications.[43] Another 
important aspect to make SFC readily applicable to metabolomics 
is the need for dedicated interfaces allowing the hyphenation of 
SFC and MS. There are two main reasons why SFC cannot be 
easily coupled to MS.[44] First, it is well known that supercritical 
fluid will depressurize/decompress when it is no longer under the 
control of the back pressure regulator (BPR), as in MS. This can 
lead to potential analyte precipitation in the tubing located before 
the MS inlet and the severe loss of chromatographic efficiency.[45] 
Second, when the mobile phase is mostly composed of supercrit-
ical CO

2
 (at the beginning of the gradient), the MS sensitivity is 

expected to be poor with ESI sources due to the absence of a pro-
ton source. For these reasons, various interfaces were introduced 
over the years to circumvent these two limitations. Among those 
different interfaces, two are commercially available, namely, the 

pre-BPR splitter with sheath pump interface and the BPR and 
sheath pump with no splitter interface.[46] In our opinion, the pre-
BPR splitter with a sheath pump interface is the most interesting 
splitter when using ESI as an ionization source. Indeed, with this 
interface, the amount of MeOH entering the ionization source is 
always between 150 and 400 µL/min regardless of the settings 
and analytical conditions, which is optimal for ESI operation.[47]

In the last few years, several applications of SFC-MS in the 
field of metabolomics have been reported, with UHPSFC-MS 
using a pre-BPR splitter with a sheath pump interface with a 
focus on lipid profiling and lipidomics.[48,49] These applications 
of UHPSFC-MS in metabolomics have been summarized in a 
recent review.[50] In the present contribution, we wanted to high-
light the work made recently in our laboratory dealing with the 
characterization of the metabolome, from hydrophobic to hy-
drophilic metabolites.[51,52] The results reported in Fig. 3 were 
obtained with UHPSFC instrumentation using a bare silica core-
shell column and a mobile phase varying from almost pure CO

2
 

to pure MeOH in the presence of water and additives, thus of-
fering excellent flexibility in compound solubility and elution. It 
is, however, important to keep in mind that under such extreme 
gradient conditions, the mobile phase is transitioning from a su-
percritical to subcritical and finally liquid state. Since no phase 
transition is observed between these states, this is clearly not an 
issue. Fig. 3A shows the possibility of analyzing various types of 
hydrophilic and lipophilic molecules belonging to very different 
classes of metabolites under these conditions, with suitable peak 
shapes and adequate retention. This result is confirmed in Fig. 
3B, showing the simultaneous analysis of a fatty acid (log P of 
9.3) and a trisaccharide (log P of –6.3) under SFC conditions, 
with both metabolites having adequate retention.[51] This clearly 
highlights the huge potential of modern SFC in metabolomics 
as a replacement strategy for both RPLC and HILIC. Next, a 
larger library of standards, which encompasses 597 metabolites, 
was analyzed under UHPSFC-HRMS conditions. As illustrated 
in Fig. 3C, most of the metabolite categories were effective-
ly analyzed. However, reduced performance was reported for 
phosphate-containing metabolites and nucleotides (also con-
taining phosphate groups), explained by possible precipitation, 
adsorption of phosphorylated metabolites on the column walls 
and frits, or lack of elution of those metabolites still retained 
by the column. In the end, 66% of all library metabolites were 
successfully detected. In addition, it is important to mention that 
the retention of all these metabolites was always adequate, as 
reported in Fig. 3D (only two of the 394 detected metabolites 
were eluted in the first quarter of the SFC chromatogram, with 
limited retention).[52]

Despite these promising results, the potential of modern SFC-
MS for untargeted metabolomics remains largely unexplored, as 
very few applications have been reported in the literature thus far. 
In addition, there is still no systematic comparison of SFC-MS 
and LC–MS performance in the field of metabolomics using the 
same MS device and samples.

5. Modes of Acquisition in MS Detection
With MS coupled to any of the aforementioned separation 

techniques, high-resolution full scan experiments allow the ac-
quisition of a wealth of information about the composition of the 
investigated samples. Nevertheless, the acquisition of fragmen-
tation data provides a number of additional advantages that can 
include structural information, increased sensitivity and selectiv-
ity. In such experiments, a trade-off has to be found between the 
amount and quality of information, acquisition speed and sensi-
tivity.

In the case of untargeted metabolomics, the major aim of the 
fragmentation experiments is to retrieve structural information 
enabling a more reliable annotation of the features found in the 
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complexity of linking a certain precursor observed in the MS1 
scan to their corresponding fragments in the MS2 spectra, which 
usually requires complex algorithmic processing.[58] To reduce 
such complexity, narrower m/z isolation windows can be estab-
lished to decrease the number of precursors fragmented in each 
MS2 acquisition. In the SWATH methodology[59] (Sequential 
Window Acquisition of All Theoretical Mass Spectra), a num-
ber of MS2 experiments are performed after a MS1 acquisition, 
sequentially moving the position of the isolation window in each 
MS2 acquisition until the whole mass range is covered. By doing 
so, spectral complexity drops since the precursors are limited to 
the m/z range selected by each isolation window, while all the 
possible precursors are fragmented in each cycle since the isola-
tion windows move to cover the whole spectral range. SWATH is 
meant to afford a good balance between spectral complexity and 
information retrieval from the samples.[60]

Ion-mobility spectrometry (IMS) is gaining popularity among 
MS practitioners as it becomes available in an increasing number 
of instruments.[61] This additional separation dimension, based on 
the charge, shape and volume of the ions travelling in the gas 
phase, serves not only to determine the cross-collisional section 
(CCS) of the molecules but also to afford additional selectivity to 
the MS detection step.[62] When IMS is placed before the collision 
cell, it can help simplify MS2 spectra in AIF experiments, since 
fragments can be more easily linked to their precursors by means 
of their different IMS values (Fig. 4). In instruments where IMS 
separation takes place after the collision cell, it can help charac-
terize the fragments themselves by allowing the determination of 
their CCS values.

6. Annotation of Untargeted Datasets
Annotation relies on the partial to complete structural eluci-

dation of metabolic features, which are ions characterized by a 
m/z and by additional information such as RT, MS/MS spectra or 
CCS. The first step in the annotation process is to assign one or 
several plausible molecular formulas with a monoisotopic mass 
that most closely matches the experimental m/z of the feature. 
Depending on the resolving power of the mass spectrometer, the 
higher the value is, the lower the number of potential formulas. 
RT, MS/MS or other orthogonal parameters will provide further 
hints about the feature’s identity. A typical untargeted metabolom-

samples.[2] The different acquisition strategies developed to cope 
with this challenge can be grouped into data-dependent acquisi-
tion (DDA) and data-independent acquisition (DIA) approaches. 
In both cases, the aim is to enrich full scan MS1 data with frag-
mentation information acquired in MS2 experiments for as many 
compounds as possible.[53] Thus, a cycle of acquisition usually 
consists of a MS1 scan first, followed by one or more MS2 scans.

In DDA, the first MS1 scan is analyzed to look for a predefined 
number of the most intense ions, which are then isolated and frag-
mented in successive MS2 experiments to obtain their individual 
spectra.[54,55] The main advantage of DDA is that the link between 
the fragments and the precursor ion is established, as long as no 
isobaric species are simultaneously eluted and isolated for frag-
mentation. The main drawback of this approach is that only a lim-
ited number of precursors (usually the most abundant ones) can 
be selected in each cycle for MS2 analysis. Since the number of 
precursors that can be selected from each MS1 scan is limited by 
the acquisition speed, fast instruments (such as Q-Tof or orbitraps 
at low-resolution MS2 settings) are preferred. Considering that 
chromatographic peaks can only be built from MS1 data points, 
a typical consequence of DDA acquisition is the drop in quanti-
tative performance due to the lower number of points per peak 
available in the LC dimension. This drawback is usually circum-
vented in metabolomics by acquiring only MS1 data in samples 
and keeping DDA acquisition with annotation purposes restricted 
to pooled QC samples. To increase the number of MS2 spectra 
acquired, it is common practice to use an exclusion list that will 
exclude masses present in blanks, such as contaminants, thus fo-
cusing fragmentation efforts on masses of biological interest. This 
concept can be taken even further by measuring the same sample 
several times and excluding at each new round masses previously 
fragmented, a process that is now fully automated in the AcquireX 
workflow (Thermo).

In DIA analyses, instead of individual precursors, sets of ions 
within broad m/z windows are simultaneously fragmented.[56] 
When the selected window covers the entire full mass range of 
the instrument, the approach is called either all ion fragmenta-
tion (AIF) or MSe[57] depending on the manufacturer, the colli-
sion mechanism and the collision energy levels applied. Although 
fragmentation information is acquired for all the compounds in 
the sample, the obvious disadvantage of DIA approaches is the 
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ic dataset usually results in a list of >20000 features, of which an 
estimated 3% are deemed unique and valid metabolites, while the 
rest are background ions, adducts, fragments, or isotopes.[63] The 
possibility of false-positives in the annotation process is therefore 
very important.

The Metabolomics Society has defined criteria for communi-
cating the confidence level in annotation.[64] The scale spans from 
4–fully unannotated feature to 1–identified structure. A recent 
proposal added the full structural elucidation of chiral compounds 
as level 0.[65] Therefore, a feature that has been annotated using 
only its m/z value will receive level 4. Confidence can increase to 
level 3 if there are hints that it belongs to a specific chemical class, 
for example, by elution at a similar RT as a standard of the same 
chemical class. Level 2 involves a putative identity that has not 
been confirmed by comparison to reference standards as in level 
1. Level 1 confidence is granted after matching to two orthogo-
nal parameters, e.g. accurate mass (AM) and RT or AM and MS/
MS spectrum, measured in the same laboratory using a reference 
standard. Annotation based on AM and RT alone is, however, not 
sufficient in complex matrices where several metabolites elute 
very closely or coelute; it is therefore good practice to use a third 
orthogonal parameter to increase confidence.[66] Additionally, 
technological advances can provide higher structural resolution, 
calling for a more refined scale system between levels 1 and 0. 
The Metabolomics Standards Initiative metric is thus currently 
under revision to take these considerations into account.[67]

Robust annotation of features measured in complex samples 
cannot yet be fully automated and requires several rounds of cu-
ration to reduce the number of false-positives while expanding 
coverage. In the first step, features are usually matched to an in-
house library containing experimentally acquired RTs and frag-
mentation spectra from standards as well as their theoretical AM. 
In general, deviations from library values should lie <10 ppm for 
AM, <0.2 min for RT and at least three fragments including the 
parent ion should be matched to the reference spectra.[68,69] Larger 
deviations might not necessarily exclude a particular annotation, 
but the reasons should be reported in detail. To ensure a high an-
alytical quality, the curator should also examine the chromato-
graphic shape, its consistent integration across samples, signal-
to-noise ratio, which is usually >5, and concomitant presence of 
typical adducts[70] or fragments. Annotation of unknown features 
not present in the in-house library is possible by querying external 
repositories for retrieving AM and fragmentation patterns.[55,65] 
For example, MassBank,[71] Mass Bank of North America MoNA 
(https://mona.fiehnlab.ucdavis.edu), the Global Natural Products 
Social Molecular Networking GNPS,[72] the RIKEN MSn spectral 
database for phytochemicals ReSpect (http://spectra.psc.riken.jp) 
or HMDB[73] offer impressive collections of open-access experi-
mental spectra, summing to >27’000 unique compounds.[74] The 

commercial METLIN[75] and NIST (https://chemdata.nist.gov) 
libraries offer well-curated spectral coverage and can be accessed 
through several data processing vendor software. In complement 
to experimental data, in silico spectra can be generated through 
rule-based (MS-FINDER[76]), combinatorial (MetFrag[77]) or ma-
chine learning (CFM:ID[78] or CSI:FingerID[79.80]) approaches. 
The wide variety of structures encountered in untargeted metabo-
lomics is nevertheless a challenge for in silico predictions, espe-
cially when targeting true unknowns, for which training sets for 
machine learning might be too small or fragmentation patterns 
still not well understood. To reduce the tremendous number of 
false-positives than can arise from using automated queries, pri-
or examination of the correlation coefficient of chromatograms 
across samples is an efficient method to quickly discard artefacts 
and pinpoint uncovered areas in untargeted data,[55] as it is con-
veniently implemented in MSDIAL, for example.[81]

Annotations of untargeted lipidomics datasets are hampered 
by the high number of lipid structures found in living organisms. 
In the LIPIDMAPS database, greater than 45’000 individual lipids 
are reported, with half of them being curated and the others being 
computer-generated structures.[82] However, the total number of 
unique lipid structures is estimated to be 100’000 and even reach-
es 1’000’000 when taking into account oxidized species.[83] This 
complexity is a challenge in untargeted lipidomics, where a high 
number of very structurally similar lipids closely elute, requiring 
high-resolution mass spectrometers to assign a candidate form- 
ula.[84,85] Lipids display particular ionization behaviours charac-
teristic of their families. For example, in the positive mode, neutral 
lipids such as diacylglycerols and triacylglycerols are more often 
encountered as adducts of ammonia or sodium, and steroids tend 
to display water losses, while in the negative mode, acetate and 
formate adducts are commonly depending on the mobile phase 
composition.[84] Similarly, acyl carnitines and endocannabinoids 
ionise in the positive mode, while the negative mode is favoured 
for fatty acids, phosphatidylinositols, sulfatides and phosphati-
dylglycosides. Reverse-phase chromatography enables the appli-
cation of the equivalent carbon number (ECN) rule to support 
annotation.[84,86] The ECN is calculated as the total number of 
carbons in the fatty acyl chains minus 2x the number of double 
bonds. Hence, lipids with longer fatty acyl chains will elute later 
than lipids with shorter acyl chains, and the higher the number 
of double bonds, the shorter the retention time. Deviations from 
this pattern can be encountered for lipids with a combination of 
unsaturated and highly saturated acyl chains, which display later 
RTs, and oxidized lipids that elute earlier than their non-oxidized 
counterparts.[87] However, RT is far from sufficient for confident 
lipidomics annotation and requires the use of fragmentation pat-
terns for structural elucidation. Lipids display characteristic frag-
ments in the positive mode to confidently assign the correct lipid 

Fig. 4. Example of MS and MS/
MS spectra for tryptophan (M+H)+ 
in hydrophilic interaction chro-
matography with amide (aHILIC) 
electrospray ionization (ESI)+ for 
all ion fragmentation (AIF) ramp 
10–60 eV with and without IM. 
The precursor ion m/z 205.0976 
(green), in-source fragment m/z 
118.0650 (blue), and fragment 
ions (red) m/z 118.0652 (AIF) and 
m/z 130.06566 (IM-AIF) were 
retrieved using Waters data ac-
quisition and processing software 
UNIFI. In-source fragment at m/z 
118.0650 is filtered out when the 
IM cell is activated. Taken from 
ref. [62].
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class, such as ion 184 of choline-containing lipids (phosphatidyl-
cholines and sphingomyelins) or the neutral loss of m/z 141 for 
phosphatidylethanolamines.[85] The level of resolution in the lipid 
structure thus greatly varies according to the amount of spectral 
information gathered. The LIPIDMAPS consortium has created 
a unified annotation nomenclature,[88] widely adopted by the lipi-
domics community and now integrated in most lipidomics work-
flows.[89] In contrast to generic metabolomics, lipidomics benefit 
from a high structural similarity within each lipid class, making 
it amenable for robust in silico fragmentation predictions. The 
LipidBlast[90] database generated in this way >120’000 in silico 
spectra covering all major lipid classes. When combining MS/
MS similarity scoring using in silico spectra with decision trees 
based on the presence of specific lipid fragments and adducts, 
the annotation rates can dramatically increase. For example, MS-
DIAL,[81] Lipostar[91] or the combination of MZmine[92] and Lipid 
Data Analyzer 2[93] offer such annotation workflows.[83]

7. Data Processing
Untargeted MS metabolomic data acquisition usually leads to 

very large raw datasets, including several thousand ion features. 
This massive volume of data potentially contains an important 
amount of information for characterizing the complexity of bio-
logical samples, but a workflow involving several steps is needed 
for knowledge discovery, as depicted in Fig. 5. Since unwanted 
sources of variability, such as instrumental variations and intrinsic 
biological diversity, may impact the measured profiles, preproc-
essing the raw data is mandatory to ensure comparability between 
samples and extract proper metabolic knowledge.[94] To this aim, 
an injection sequence including technical samples and designed 
according to a number of widely adopted best practices can serve 
as an efficient basis to correct or reduce these undesirable effects 
by removing poor quality or artefactual signals unrelated to the 
study samples and filtering data that do not meet specific analyti-
cal quality criteria.[2,53]

Monitoring data acquisition using QCs currently constitutes 
a widely adopted practice. QCs should be representative of the 
biological matrix subjected to analysis, and a pragmatic approach 
consists of taking a small volume from all samples of the study to 
create a synthetic average sample. QCs are then included in the 
analytical sequence at regular intervals and across batches to con-
trol analytical stability in real conditions. Feature-wise correction 
or filtering strategies are then applied to discard noisy or saturated 
signals.[95] This may include removing specific areas of the chro-
matogram (e.g. injection peak) or spectral ranges of poor chemical 
information, discarding features with a large proportion of miss-
ing values, and filtering features with high variability (e.g. relative 
standard deviation greater than 20%) in the repeated QC injec-
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Fig. 5. Knowledge discovery workflow in untargeted metabolomics.

tions. QCs with a known dilution factor can also be used to assess 
the response to dilution as a criterion of signal reliability.[96] Since 
a gradual decline in overall signal intensity, potentially leading to 
artificial differences between samples, is often observed during 
long analytical sequences, QCs can be used as anchor points to 
correct such a drift using regression models.[97] Variations occur-
ring between batches can be corrected using a similar strategy.
[98] Intrinsic differences in concentration between the study sam-
ples, due to biological or technical variations, may also preclude  
the reliable comparison of metabolic signatures. To circumvent 
this issue, a normalization factor can be used to correct for such 
a size effect. It can be derived from a reference parameter (e.g.  
number of cells or amount of protein) or well-identified com-
pound (e.g. creatinine) or based on a data-driven statistical  
approach.[99]

8. Data Analysis
The comparison of metabolic signatures can be performed 

using either univariate or multivariate statistical methods.[100] 
Univariate techniques encompass classical one-variable-at-a-
time comparisons and are often carried out to investigate identi-
fied metabolites of specific interest. Fold changes can be used to 
investigate the ratio between average levels observed in different 
experimental groups, while hypothesis testing can be carried out 
to estimate the significance of the observed differences. Both par-
ametric and nonparametric approaches can be used to compare 
groups of observations (e.g. case and control),[101] and the choice 
of the test depends on the characteristics of the data (dependence, 
distribution and scedasticity). Since a large number of features are 
measured, multiple hypothesis tests are often performed in par-
allel. As a consequence, correction strategies have to be applied 
to control the frequency of false-positive results (e.g. Bonferroni 
correction[102] or the Benjamini-Hochberg false discovery rate ap-
proach[103]).

Multivariate methods are particularly well suited to analyze 
untargeted metabolomic datasets, as they involve multivariate 
models accounting for all variables in the analysis, thus poten-
tially revealing relationships between subsets of metabolites.[104] 
For that purpose, dimensionality reduction strategies are imple-
mented to extract biologically meaningful trends that may be 
hidden in the mass of data and offer meaningful representations 
of the data.[105] In practice, scaling strategies are often used to 
ensure the comparability of the measured signals when the var-
iables have very different intensity ranges. Different modelling 
strategies can then be chosen to explore metabolic variations 
in an unsupervised manner or to focus on differences between 
experimental groups. The first step of multivariate data analysis 
is often carried out using unsupervised methods to check da-
ta consistency. For that purpose, principal component analysis 
(PCA) is a widely used approach that aims at extracting the ma-
jor structures of variability in the data by building new synthetic 
axes maximizing the variance explained. PCA results can be eas-
ily visualized as graphical outputs to assess the distribution of 
the samples, systematic trends or potential outliers. This repre-
sents an efficient exploratory tool, but specific modulations with 
relevant biological meaning may be masked by greater sources 
of variability in the data. In this context, supervised modelling 
approaches can be used to focus on a given part of the biochem-
ical information (e.g. differences between experimental groups). 
With this aim, partial least squares (or projection to latent struc-
tures, PLS) regression is a potent method to efficiently handle 
datasets characterized by a large number of correlated variables 
but a limited number of observations.[106]

9. Biological Interpretation
The ultimate aim of metabolomics is to provide reliable mech-

anistic hypotheses to explain the observed changes.[107] It is there-
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fore essential to place the statistical results obtained from metabo-
lomic experiments in their biological context. To this aim, bioinfor-
matic databases, e.g. KEGG[108] MetaCyc[109] and HMDB,[73] and 
metadata query tools designed to describe and explore metabolic 
pathways and networks constitute very potent solutions to trans-
late lists of modulated metabolites into biological information.[110] 
These tools include pathway enrichment analysis, usually carried 
out based on overrepresentation to rank biological processes using 
a statistical criterion. Metabolic networks represented as graphs 
constitute today the gold standard to describe the hierarchy of bi-
ochemical reactions that define metabolism. An investigation of 
different topological features of biological meaning, such as path 
lengths, the degree of centrality and the clustering coefficient, can 
help to highlight hubs and modules of relevant metabolites.[111] 
Bioinformatic solutions for pathway mapping and network anal-
ysis include MetExplore,[112,113] MetaMapR,[114] BiNChE,[115] 
MBRole,[116] MPEA,[117] Mummichog,[118] and MetaboAnalyst.[119]

10. Conclusion
Analytical developments in metabolomics should improve the 

ability to detect a large number of metabolites at low concentra-
tions as well as at high concentrations in a complex matrix. In that 
respect, separation techniques such as LC/UHPLC, SFC, and CE 
constitute mandatory tools to separate analytes and allow optimal 
conditions for their detection with MS. The study of fundamental 
aspects of separation science is therefore still essential to increase 
the overall coverage needed in metabolomics for various fields 
or research. Developments in MS instruments are also required 
to increase the annotation confidence, such as high resolution, 
capacity to increase the number of fragmentation events, and in-
corporation of different fragmentation strategies, such as ultra- 
violet photodissociation. As high-resolution MS is expected to 
help the identification of unknown analytes, untargeted approach-
es, instead of focusing on a restricted number of targeted com-
pounds, still constitute promising tools for global monitoring.

Overall, state-of-the-art analytical technologies combined with 
computational techniques will make a difference in untargeted me-
tabolomics, providing high-throughput analysis, large metabolite 
coverage, accurate quantification and low-cost analysis. Technical 
developments will bring progress in the field aiming at providing 
critical solutions in drug development and biotechnology. Finally, 
the integration of other omics data (genomics, transcriptomics, pro-
teomics) in different pathway analysis tools will open up the way 
to overcome bioinformatic challenges in untargeted metabolomics.
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[17]	 P. M. Nowak, M. Woźniakiewicz, M. Gładysz, M. Janus, 
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