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Abstract: The design, synthesis, commercialization and application of air-stable Ni(II)/Josiphos complexes has 
been realized in a collaboration between Solvias and ICBMS (University Lyon 1). The Ni-complexes are utilized 
as versatile precatalysts for diverse cross-coupling reactions. Apart from being active in established C–C and 
C–N couplings at low catalyst loadings, the novel Ni-precatalysts enabled the development of the challeng-
ing monoarylation of ammonia, ammonia surrogates and even alkylammonium chlorides with aryl carbamates. 
Finally, the α-arylation of acetone with aryl chlorides, carbamates and pivalates was demonstrated using the 
Ni(II)/Josiphos precatalysts.
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1. Introduction
Since more than two decades, the Ligands & Specialty 

Products unit at Solvias provides full service in the field of ho-
mogeneous and heterogeneous metal catalysis. In addition, 
Solvias is a producer of ligands and catalysts for homogeneous 
catalyzed reactions from gram to multi-kilogram scale. The com-
bination of a broad ligand and catalyst portfolio with capabili-
ties in the development of chemocatalyzed reactions supported 
by a high-throughput experimentation (HTE) platform allows for 
the investigation of a wide variety of different transformations 
such as homogeneous and heterogeneous hydrogenations, C–C 
and C–X couplings, carbonylations, aminations and recently also 
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that could lower the functional group tolerance in complex mol-
ecules. To avoid these drawbacks, the challenging mono arylation 
of ammonia has been addressed under palladium catalysis[7] by 
the groups of Hartwig,[8] Buchwald,[9] Beller[10] and Stradiotto. [11] 
Another important breakthrough was recently achieved by the 
groups of Hartwig[4] and Stradiotto[12] by employing Ni/Josiphos 
catalysts for the arylation of ammonia starting with aryl chlorides 
and tosylates. As a new step forward, we investigated the use of 
air-stable nickel(ii) precatalysts for the arylation of ammonia with 
aryl carbamate derivatives as substrates (Scheme 2). The reaction 
was performed using a solution of ammonia in dioxane (0.5 M) in 
the presence of NaOtBu as base in o-xylene as solvent at 110 °C 
for 16  h.[3] Naphthalene carbamate derivatives substituted with 
electron-withdrawing or electron-donating groups were toler-
ated and the desired anilines derivatives were obtained in good to 
excellent yield. Interestingly, heterocyclic arylcarbamates could 
also be used as starting material under the identified reaction 
conditions. Noteworthy, aniline products could also be obtained 
by using ammonium sulfate as an ammonia surrogate. Here, a 
greater excess of NaOtBu was required to reach similar reaction 
outcomes compared to the procedure using ammonia. It should 
be mentioned, that in the meantime, the Stradiotto group also de-
veloped a similar strategy for the arylation of ammonia using aryl 
carbamates, sulfamates and pivalate derivatives.[13]

transformations enabled by photoredox-catalysis. With a strong 
focus on applying latest scientific findings in the development of 
commercial catalytic processes, various collaborations with aca-
demia were established.[1] Amongst others, a long-standing co-
operation with the University of Basel which was started in 2007 
with the commercialization of iridium-UBAPHOX complexes for 
asymmetric hydrogenation. More recently, a new collaboration 
in the field of photocatalysis was launched with Prof. Sparr to 
introduce a novel organic aminoacridinium photocatalyst to the 
market.[2] Another key technology of interest towards sustainable 
chemistry is the application of non-precious metals in modern 
catalysis. In 2015, a collaboration on Ni-catalyzed reactions was 
started between the ICBMS (University of Lyon) and Solvias, 
which is followed-up by a new and exciting internal program on 
Ni-catalyzed aminations. Nickel is a highly attractive transition 
metal. Besides its high availability and low cost, its reactivity 
especially enabling facile oxidative addition of aryl chlorides or 
aryl ethers is of prime interest. Moreover, radical pathways are 
well-accessible with Ni, while β-hydride elimination tends to be 
slower in comparison to Pd. These properties led to the advent of 
‘Ni-photoredox dual catalysis’ as a new tool to create challenging 
bonds under comparatively mild conditions. A main drawback in 
Ni-chemistry is the high air and moisture sensitivity of Ni(0) prec-
atalysts such as Ni(COD)

2
. In this context, we launched a research 

program to investigate the synthesis as well as the application of 
air stable Ni(ii)/Josiphos precatalysts, of which several have been 
commercialized. These precatalysts allowed to achieve the chal-
lenging arylation of primary building blocks such as ammonia 
and acetone. Independently, Cornella as well as Engle recently 
developed two air-stable and now commercially available Ni(0)-
precursors: Ni(4-tBustb)

3
 and Ni(COD)(DQ).[3]

2. Synthesis of Air-stable Nickel (ii) catalyst
The synthesis of a new air- and moisture-stable nickel (ii)/

Josiphos precatalyst has been developed. Treating 4-chloro-
benzonitrile with substoichiometric amounts of Ni(COD)

2
 and 

SL-J003-1 allowed to isolate the desired stable Ni(ii)-precatalyst 
SK-J003-1n (Scheme 1).[4] Herein, the nitrile-group has a dual 
role. Its electron-withdrawing character facilitates the reduc-
tive elimination to set free the desired reactive L-Ni(0) species 
while at the same time forming benzonitrile derivatives in cata-
lytic amounts in the reaction media. These latter species could 
further enhance the stability of Ni(0) intermediate by forming 
Ni(η2-NC-Ar) complexes as demonstrated earlier by the Hartwig 
group. [5] The same synthetic protocol can easily be extended to 
other Josiphos ligands enabling the formation of a plethora of 
air-stable, but in reaction media highly active, Ni(ii)-precatalysts. 

3. Nickel/Josiphos-catalyzed Arylation of Ammonia 
and Alkylamines Using Aryl Carbamates

Aryl amines are ubiquitous intermediates and are widely 
employed for the manufacture of agrochemicals, dyes as well 
as pharmaceuticals.[6] The direct access to aniline derivatives 
through mono selective arylation of ammonia has been considered 
as a huge challenge for a long time. Previous methods relied on the 
use of ammonia surrogates that increased costs and made it neces-
sary to implement an additional synthetic step for deprotection, 
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sociation of Ni(COD)
2
/Josiphos L1 allows the mono-selective 

α-arylation of acetone using aryl chlorides, aryl pivalates as well 
as aryl carbamates derivatives. The reactions were performed in 
the presence of CsF or Cs

2
CO

3
 as base in trifluorotoluene as sol-

vent at 120 °C (Scheme 5). The reactions tolerate the presence of 
both electron-withdrawing and electron-donating groups. In ad-
dition, heterocyclic compounds were tolerated under the reaction 
conditions and the desired products were obtained in good to ex-
cellent yields. Also more complex aryl chloride starting materials 
could be converted to the desired product in moderate to excellent 
yield (products 4j & 4k, Scheme 5).[18]

Next, we decided to investigate the use of air/moisture stable 
Ni(ii) catalysts for the α-arylation of acetone. The reactions were 
performed in the presence of 10 mol% of Ni(ii) precursor. It turns 
out that with SK-J002-1n, desired compound 4a was afforded in 
only 44% yield. However, SK-J003-1n and SK-J004-1n allowed 
the full conversion of the starting material and in both cases the 
desired product 4a was obtained in an excellent yield of >99%. 
In contrast, a diminished yield of 55% was obtained when using 
precatalyst SK-J014-1n (Scheme 6).

With these results in hand, we decided to investigate the reaction 
scope with the air-stable SK-J004-1n (Scheme 7). Remarkably, 
the same excellent yield for compound 4a was obtained when 
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Scheme 5. Nickel-catalyzed α-arylation of aryl chlorides, carbamates 
and pivalates.

In the following, we also investigated the challenging aryla-
tion of methyl- and ethylamines. In this context, the correspond-
ing methyl and ethyl ammonium chloride salts were used as cou-
pling partner along with aryl carbamate under the same system 
reported for the arylation of ammonia except for the excess of 
NaOtBu (4 equiv.) and the use of toluene as solvent. The desired 
products were obtained with good selectivity (Scheme 3).

In order to get more insight into the reaction mechanism, the 
air-stable Ni(ii) catalyst SK-J003-1n was treated with ammonia 
(2  equiv.) in the presence of NaOtBu (1.5  equiv.). The desired 
product 2g was obtained in 34% yield within 2 hours reaction time 
at 110 °C (Scheme 4). Preliminary 31P NMR studies indicate the 
formation of Ni(η2-NC-Ph-4NH

2
). Thus, this result is consistent 

with a Ni0/NiII catalytic cycle. 

2.1 Nickel/Josiphos-catalyzed α-Arylation of Acetone
The direct α-arylation of substrates with activated (acidic) C–H 

bonds under transition metal catalysis is a powerful tool to access 
compounds possessing a benzylic carbonyl moiety.[14] In this con-
text, several procedures have been developed since the pioneering 
work of Miura, Buchwald and Hartwig.[15] Similar to the arylation 
of ammonia, the mono selective α-arylation of acetone turned out 
to be a challenging task as the mono-arylated acetone is prone 
to undergo further arylation. This challenge has been addressed 
by the group of Stradiotto in 2011 under palladium catalysis.[16] 
Afterwards, several methodologies have been developed using 
palladium employing diverse ancillary ligands. [17] We envisioned 
to develop the nickel-catalyzed α-arylation of acetone by apply-
ing the nickel/Josiphos system as alternative to well-established 
palladium processes. After optimization, it turns out that the as-
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type ligands play a key role in the stabilization and catalytic reac-
tivity of Ni(ii) intermediates. Moreover, the presence of an excess 
of L1 allowed the formation of the (L1)

2
Ni(0) intermediate, which 

was demonstrated to be catalytically active. Thus, the presence of 
an excess of ligand may enhance the stability of the present Ni(0) 
species. Regarding Ni(ii) precatalyst, the presence of benzoni-
trile in the media may also improve the stability of Ni(0) through  
η2-coordination of the cyano group to the metal center.

5. Conclusion
We demonstrated that the combination Ni/Josiphos is an effi-

cient catalytic system for the arylation of primary building blocks 
including ammonia and acetone. The catalytic system is highly 
efficient towards the activation of aryl chlorides, carbamates and 
pivalates substrates. Furthermore, commercially available and air-
stable Ni(ii) precatalysts are also highly efficient and easier to 
handle in comparison with very sensitive and difficult to handle 
Ni(0) precursors. Moreover, the presence of benzonitrile in the 
starting Ni(ii) catalyst could be beneficial for the stabilization of 
the active Ni(0) catalyst. Josiphos ligands have shown once again 
their particular efficiency especially for the α-arylation of acetone 
since no other known phosphine or carbene ligands tested un-
der the developed conditions have shown reactivity. The Solvias/
ICBMS (University of Lyon 1) partnership is a fruitful industrial/
academia collaboration with already major discoveries in the field 
of nickel-catalyzed cross-coupling processes. The application of 
Ni/Josiphos catalysts is still under joint investigation for the de-
velopment of new and original methodologies. 
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