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Abstract: Digitalization is having an increasing impact on all in-
dustrial sectors, including the chemical and biotechnological 
industries. Aiming for innovative research and development, 
the Swiss Universities of Applied Sciences play a pivotal role 
in transferring academic knowledge and know-how to industrial 
practice. We review selected examples of projects related to 
the digitalization of processes and bioprocesses at four differ-
ent institutions across Switzerland. These developments cover 
the whole spectrum of digital technologies, including big data, 
connectivity, analytics and automation. They are conducted in 
close collaboration with industrial partners and aim to support 
the growth of this important industrial sector.
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Digitalization is the use of digital technologies to transform 
business operations. Here we focus on operations used in the 
chemical and biotechnological industries, that we refer to as pro-
cesses and bioprocesses, respectively. Digitalization has been a 
major theme for several years now, in both private and public 
sectors. Indeed, ongoing technological progress has opened new, 
disruptive possibilities. These enabling technologies include in-
dustrial internet of things, big data and analytics, cloud comput-
ing, advanced automation, digital twins and augmented reality. 
On the other hand, the idea that digital technologies can translate 
into significant economic growth has turned ‘successful digitali-
zation’ into a priority, for economic and political decision makers 
alike.

With their focus on teaching professional skills, performing 
innovative applied research and offering high-value services, the 
Universities of Applied Sciences can play a key role in the ongo-
ing digitalization of the industry. In Switzerland, the chemical, 
pharmaceutical and biotechnological industries together generate 
approximately 5% of the gross domestic product (which amounts 
to about 20% of the Swiss industrial production). For about 10 
years, this industrial sector has been the leader of Swiss exports 
and in 2020 it reached 52% of total exports.[1] What is the current 
and future role of digitalization in this context?

As a country, Switzerland seems to compare favorably 
in terms of digitalization. For instance, IMD’s World Digital 
Competitiveness Ranking 2019 placed it fifth in the world in 
terms of digital competitiveness.[2] This assessment was based 
on three main areas: ‘knowledge’, ‘technology’ and ‘future readi-

ness’. Looking closer at individual areas, it is the ‘knowledge’ 
area (defined as ‘know-how necessary to discover, understand 
and build new technologies’) that scored particularly well. This 
is confirmed by other studies showing that for instance research 
on digitalization is particularly active in Switzerland.[3]

Advanced knowledge and know-how, however, does not 
automatically translate into the widespread implementation of 
these technologies in industrial production: The Organisation 
for Economic Co-operation and Development (OECD), in its 
2019 Economic survey of Switzerland, assessed that the take-
up of new technologies by Swiss firms was around European 
average.[4] Interestingly, McKinsey Global Institute compared 
the adoption of digital technologies between different industrial 
sectors worldwide. The differences were large: Notably, the phar-
maceutical industry scored the lowest (score 13), far behind other 
goods industries like the automotive (score 31) for instance.[5]

Taken together, this suggests that there is a significant po-
tential for further digitalization in the chemical and biotechno-
logical industries in general, and in Switzerland in particular. The 
Universities of Applied Sciences can play a pivotal role in this re-
gard, keeping up the strong tradition of innovative developments 
and, in parallel, boosting digital technology transfer. The pres-
ent article showcases selected digital technology projects at four 
Universities of Applied Sciences. HEIA-FR has transformed a 
pilot production hall to demonstrate the deployment of advanced 
digital technologies in chemical production. HES-SO Valais-
Wallis shows the potential of high-throughput DNA sequencing 
and bioinformatics for developing faster and safer bioprocesses. 
ZHAW combines cutting-edge analytics, modeling and automa-
tion to develop smart bioprocessing solutions. Finally, FHNW 
uses machine learning to advance the automated interpretation 
of NMR spectra. Altogether these contributions demonstrate that 
the field is under very active development, covering the whole 
spectrum of digital technologies. These tools will prove to be 
critical in sustaining the continued growth of the chemical and 
biotechnological sectors.

HEIA-FR, School of Engineering and Architecture, 
Fribourg

At the School of Engineering and Architecture Fribourg 
(HEIA-FR), we are attentive to new digital challenges as we 
strive to meet the needs of the chemical industries. In discussion 
with our industrial partners, their interest is focused on aspects of 
predictive maintenance, reduction of production downtime and 
process deviation detection. To be accepted, the solutions must be 
integrated with existing equipment and bring rapid gains with a 
relatively moderate investment. As most production lines already 
have a good level of automation, the strategy is to use the data 
already available in the MES (Manufacturing Execution System) 
with a Big Data approach, add, if necessary, new measurement 
points by non-invasive Internet of Things (IoT) solutions and de-
velop scalable algorithms using machine learning, deep learning 
or digital twin tools. Developing a digitization strategy requires 
interdisciplinary skills. At the HEIA-FR, with teaching depart-
ments along with research and development institutes active 
in the fields of computer science, mechanical engineering and 
chemistry, we have all the necessary resources to develop a digi-
talization strategy.
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To demonstrate our skills, five HEIA-FR research institutes 
are currently developing a demonstration platform. The project, 
led by the Institute of Chemical Technology (ChemTech), aims 
to deploy digital technologies in our pilot production facility. 
The goal is to inter-connect users, factory building and process 
equipment to provide predictive maintenance tools and algo-
rithms for process deviation detection (Fig. 1). Technologically, 
we use contactless sensors, RFID tags or energy consumption 
measurements to power our algorithms. On one of our reac-
tors, a digital-twin approach makes it possible to detect a slight 
deviation in the flow of fluids in a few seconds. The consump-
tion of energy networks (water, vacuum, nitrogen, steam) are 
monitored by a machine learning algorithm to detect abnormal 
behavior and identify the source and cause of the deviation. 
To ensure interoperability between systems, the communica-
tion layer is based on the industrial protocol Open Platform 
Communications Unified Architecture (OPC UA). Our facili-
ties are connected to operators via augmented reality tools to 
guide the maintenance technician to the source of the problem 
while providing the necessary procedure to resolve the prob-
lem. This demonstration platform is available to all our partners 
in order to experiment with the possibilities offered by digitali-
zation in the chemical industry.

HES-SO Valais-Wallis, School of Engineering, Sion
Industrial activities in the chemical and biotechnological sec-

tors have a long and rich tradition in the Swiss Canton of Valais. 
These activities play an important economic role for the region 
but also at the national level. The Canton has now made digitali-
zation a priority of its socioeconomic development plan.

As a University of Applied Sciences, one of the missions of 
HES-SO Valais-Wallis is to foster innovation and boost regional 
economic activities. Last year, the institution signed a 10-year 
strategic partnership with the biotechnology company Lonza. 
The agreement aims at mutually beneficial developments in 
scientific and educational areas. Importantly, digitalization and 
smart biomanufacturing represent a key axis of the collaboration. 
Hence, the initial scientific projects focus on digital biotechnol-
ogy, specifically in the areas of smart sensors and data science. 
Beyond this important partnership, data science in general is un-
der very active current development at the School of Engineering 
of the HES-SO Valais-Wallis, including the Institute of Systems 
Engineering and the Institute of Life Technologies.

Specificity of Bioprocess Digitalization
Worldwide, the megatrend digitalization is making its way in 

industrial biotechnological processes. Like in other industries, 

Fig. 2. Digitalization-related op-
portunities along the three steps 
of the bioprocess (i.e. strain 
development, upstream and 
downstream processing). The 
table lists examples of enabling 
technologies, sorted according to 
various aspects of digitalization. 
The arrows emphasize integration 
and feedback along the biopro-
cess: Strains can be developed 
to fit culture conditions and to 
facilitate product purification 
(blue triangle). Conversely, data 
about upstream and downstream 
processing can help to optimize 
strains (green arrows) in order 
to increase the efficiency of the 
whole bioprocess.

Fig. 1. Digitalization strategy of 
the pilot production facility  
of the HEIA-FR.
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Currently, most companies rely on several different experi-
mental methods. These methods generally require a significant 
amount of manual work and each of them only yields partial 
information (Fig. 3a). Instead, we apply high-throughput DNA 
sequencing methods (specifically third generation, ‘long read’ 
technologies) and bioinformatic analyses to obtain a complete 
picture of a transgene integration sites. This includes the genetic 
architecture of the insertion and its precise location in the host 
genome (Fig. 3b). As opposed to conventional methods, high-
throughput DNA sequencing and bioinformatic analysis can be 
automated to a large extent. We envision that correlating the ge-
nomic features of transgenes with cells’ productivity can cut on 
lengthy cell line selection procedures: It can help to predict high 
producing lines and fast-track them for further development.

High-throughput DNA Sequencing and Bioinformatics 
in the Bioprocess

High-throughput DNA sequencing, bioinformatics and 
modeling have the potential to transform the bioprocess in sev-
eral important ways (Fig. 4). These methods can be used to not 
only characterize transgenes but the entire genome of the host. 
This has allowed to us to develop efficient ways to assess the 
genetic homogeneity of a cell population, which is a critical pa-
rameter of the bioprocess. After a cell line has been engineered, 
a single progenitor cell is usually isolated and grown into a cell 
bank. The cell bank is the source of all subsequent production 
cells. Clonal derivation of the cell bank thus helps to ensure 
homogeneity of the production cells and reproducibility of the 
bioprocess.

Based upon data obtained from whole-genome sequencing, 
we have developed a statistical model that can reliably infer if 
a cell bank was indeed derived from a single progenitor cell 
(clonal derivation).[6] Given the technical difficulties and costs 
associated with clonal derivation of cell banks, this method of-
fers new avenues to streamline and de-risk cell line develop-

digitalization can benefit bioprocesses through big data, con-
nectivity, integration, modeling and automation (Fig. 2). A key 
difference with other industries, however, is the reliance of the 
biotech industry on biological organisms for production. This 
represents a great challenge but an equally great opportunity. 
Indeed, more than four decades into modern biotechnology, our 
understanding of the organisms used for bioproduction is still 
too scarce to model them accurately. We cannot predict their re-
sponse efficiently and this constrains the potential of digitaliza-
tion in bioprocesses.

The combined action of four driving forces, however, can 
change the situation: First, high-throughput characterization of 
cells and genomes, second continued improvements in bioinfor-
matics and modeling, third efficient and precise genetic engineer-
ing and fourth, automated development cycles. This paradigm, 
sometimes referred to as ‘engineering biology’, is applied for 
strain development but it can be integrated with the rest of the 
bioprocess: Data acquired during fermentation or downstream 
processing can be used to iteratively modify the cells, allowing to 
further optimize bioproduction. We briefly introduce two recent 
developments showing how big data and data analytics can bene-
fit cell line development and upstream processing in a bioprocess.

Characterization of Cell Lines
As a first example, we are establishing new solutions to ef-

ficiently characterize modifications made to the genome of cells 
used for bioproduction. In industrial biotechnology, the inser-
tion of foreign DNA into the cells remains, to a large extent, an 
uncontrolled process. The genomic location and the sequence of 
the integration, however, contribute to the expression level of the 
product and the stability of the cells. Thus ‘transgene charac-
terization’ is often a regulatory requirement (for instance in the 
case of therapeutic protein production). In the long run, better 
transgene characterization is essential for developing better cell 
lines and increasing productivity.

Fig. 3. Characterization of transgene integration sites in a cell line. In animal cell lines for instance, transgenes often integrate as concatemers that 
are difficult to characterize using standard molecular biology techniques. a. The conventional procedure is based on several methods including 
quantitative PCR (qPCR) to estimate transgene copy number, Sanger sequencing to establish a consensus sequence and Fluorescence In Situ 
Hybridization (FISH) to obtain the approximate chromosomal location. b. High-throughput DNA sequencing (including technologies yielding reads up 
to 100s kb long) and bioinformatic analysis can precisely locate the genomic integration site and fully resolve its architecture (here three head-to-tail 
transgene copies, for illustration purpose). The rightmost transgene copy contains a G to A mutation (red) that would be undetectable using conven-
tional Sanger sequencing.
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ment. Moreover, we have found that, through cellular cloning, 
each cell line acquires a unique genetic signature (in the form 
of a set of naturally occurring point mutations).[6] This signature 
can be read and, like a barcode, it allows for authentication of 
the cell bank. This can be performed during a production run 
or at the end of it. Data from high-throughput sequencing can 
also be used to sensitively detect contamination (for instance 
viruses), a major risk of biotechnological production in general. 
Thus, adoption of whole genome sequencing can significantly 
improve bioprocesses, from cell line development to production 
efficiency to quality management.

In conclusion, digital biotechnology is a strategic axis of 
development at the HES-SO Valais-Wallis. Current efforts fo-
cus on big data acquisition and smart data analysis, addressing 
physical and chemical properties of the bioprocess, as well as 
its biological constituents. The School of Engineering and the 
Institute of Life Technologies work in close collaboration with 
industrial partners. As it is often the case with disruptive tech-
nologies, the necessary changes implied by digitalization can be 
intimidating. We thus not only focus on developing innovative 
solutions but we also pay particular attention to finding ways of 
lowering adoption barriers and easing transformation.

ZHAW, Department of Life Sciences and Facility 
Management, Wädenswil
The implementation of digital tools and workflows – further 
accelerated in the wake of the Covid19 pandemic – today is 
a dominant topic in the R&D roadmaps of the producing in-
dustries. The dynamic progress in this field exceeds the pace 
of other technological developments, and yet is still in com-
paratively early stages in sectors with ‘classic’ nature science 
orientation. Corresponding to the broad scope of use scenarios 
and methodical approaches, multiple centres and research 

groups at ZHAW currently engage in the design, development 
and prototyping of digital tools and integrated data solutions for 
robust, performance-optimized and sustainable processes. In 
the following, we briefly touch on the requirements, technical 
enablers, and implementation examples of process digitaliza-
tion in biotechnology and biochemistry, exemplary for two core 
segments of the Swiss innovation landscape.
 
Integrated Systems for Enhanced Bioprocess 
Understanding and Control 

Biopharmaceutical laboratories and production plants 
typically rely on work procedures with a significant share of 
manual handling steps, from material preparation to sample 
analysis. Large equipment fleets with stand-alone configura-
tion, different data formats and communication protocols ren-
der the implementation of modern Industrial Internet of Things 
(IIoT) or Industry 4.0 concepts challenging. Moreover, regula-
tory constrains disfavour changes in existing production setups 
or processes after validation and approval. 

The need to use data more efficiently is evident, and many 
larger companies run dedicated initiatives to advance the digi-
talization level in their production lines. Model-based control, 
soft sensors and digital twins are just some of the omnipresent 
keywords. The task posed to applied research is to make such 
tools accessible for a broad user base, including start-ups and 
small and medium enterprises (SME), via infrastructure and 
software concepts that are tailored to this application domain.[7]

Establishing the technical and methodical framework for 
bioprocess intensification via ‘smart’ digitalization and auto-
mation concepts is the goal of an Innosuisse-supported project 
between the Bioprocess Technology research group at ZHAW 
and Securecell AG, Urdorf. It explores the potential of unified 
monitoring, control and evaluation routines in a broad set of 

Fig. 4. High-throughput DNA sequencing and big data analytics can provide strong support during cell line development and upstream processing. 
The illustration shows a simplified bioprocess for a mammalian cell expression system. During cell line development, the cells are engineered itera-
tively to obtain optimal product expression. High-throughput DNA sequencing (simply referred to as “sequencing” in the figure) allows for genomic 
and transcriptomic profiling of candidate cells. These methods can support metabolic engineering and the rapid selection of promising cell lines. At 
the end of cell line development, successful clonal derivation of the master cell bank can be verified based on whole-genome sequencing and data 
analysis (via the genomic test of clonality). Simultaneously, the algorithm can identify the genomic signature of the cell line (based on naturally oc-
curring point mutations represented by orange bases). During production (or at the end of the run), the signature can be used to authenticate the cell 
line. High-throughput DNA sequencing can also be used to assess genetic stability of the cells and to detect potential contamination.
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dispersion, local oxygen supply and culture physiology can be 
mapped.[10] In silico representations or ‘Digital twins’ of the 
reactor system can be validated against physical experiments 
with high-precision analytics, such as laser doppler anemom-
etry. Supported by real-time data, they can be run next to the 
‘actual’ process to reflect the dynamics in a culture vessel in 
real time (Fig. 6). Researchers at the Competence Center for 
Biochemical Engineering and Cell Cultivation Techniques are 
exploring how the combination of model-derived, process engi-
neering parameters with biological parameters can be exploited 
for improving equipment design and culture performance from 
shake flask to production scale.

Digital Tools for Advanced PAT Concepts
Depending on source, noise level and structural complex-

ity of process data, sophisticated algorithms can be necessary 
for pre-processing and correct interpretation. Spectroscopic 
data from RAMAN, impedance or other in-line sensors are 
primary examples.[11] In collaboration with leading suppliers 
of PAT equipment, experts on Sensor Technology and associ-
ated analytical research groups at the Institute of Chemistry and 
Biotechnology are designing mechanistic models that allow for 
tracking morphological and metabolic features of reactor con-
tent that cannot be covered by classical sensors. To comply with 
different reference analysis methods available in different pro-
cess labs, a ‘soft sensor suite’ featuring different levels of model 
calibration and validation has been developed. The user can opt 
between fully defined (mechanistic) estimators, and different 
stages of hybrid up to ‘black box’ models to derive the target 
variable. Application examples currently under investigation at 
ZHAW range from photobioreactors for microalgae cultivation 
to crystallization processes in chemical engineering. In the first 
example, bias by light irradiance and substantial changes in cell 
morphology have to be compensated by the model, while in the 
latter example monitoring becomes possible in high-pressure 
environments that preclude the use of standard sensor equip-
ment.

Automation as Enabling Technology
Many digital solutions around processes are inherently con-

nected to automation, either in data acquisition/exchange or in 
hardware operations that shall be triggered. In bioprocesses, it 
is usually not possible to obtain all relevant information from 
online sensors, either (i) due to a lack of suitable measurement 

biotechnological value chains, from microbial to mammalian 
and microalgae cultivations. As one of the key deliverables, a 
fully integrated development and prototyping ecosystem for 
digitally enhanced workflows in biotech is created, termed 
i2BPLab (Intelligent and Integrated BioProcessing Lab). By 
bridging gaps between traditionally isolated unit operations, 
a holistic view on the entire processing chain is provided, 
opening the door to ‘advanced’ methods for data exploitation  
(Fig. 5).[8]

The initial prerequisite to implement digital workflows is 
to ensure end-to-end data integrity.[9] In bioprocessing, this 
means that isolated measurement points and continuous signals 
from preparation phase to preculture data, cultivation runs and 
downstream purification steps have to be aligned in one central 
platform. Potent data mining strategies can then be applied to 
screen for interdependencies, e.g. between raw material proper-
ties, equipment specifications and product quality attributes. For 
valorisation in form of improved process guidance, the relevant 
information has to be extracted from the data stream in a fully 
autonomous way, contextualized and translated to the correct 
control operation in (near) real-time. Forward-looking concepts 
include the implementation of ‘intelligent’, sampling-on-demand 
strategies via model-based prediction. The process algorithm de-
cides when an at-line analytical sample is required to maintain 
a given prediction accuracy, helping to keep manual efforts at a 
reasonable minimum. The i2BPLab tackles these different tasks 
via preconfigured sub-modules in the process management and 
information system, which allow for rapid adaptation to infra-
structure and process layout in use.

A Closer Look at the Process with Real-time 
Modelling

High computation power and flexible interfaces to program-
ming environments facilitate the inclusion of data-intense simu-
lations and models in real-time control context. Particularly, 
process variables that are hard to determine by measurement, 
and previously were approximated from simplified reference 
experiments, can now be calculated with high spatial and tem-
poral resolution for a better ‘view inside the bioreactor’.

One basic example in bioprocesses is oxygen demand, typi-
cally expressed via the volumetric mass transfer coefficient 
(k

L
a) and transfer rate (OTR) as global variables. By coupling 

population balance models (PBM) with computational fluid 
dynamics (CFD), the dependency chain from air bubble size 

Fig. 5. Schematic representation 
of workflows, systems and data 
interfaces in an integrated lab 
environment for bioprocessing. 
To exploit the full potential of ad-
vanced, digital tools, data should 
be collected across the full value 
chain and consolidated in a cen-
tral depository.[8]
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technologies or (ii) due to bias caused by complex and vary-
ing matrix backgrounds. Sampling robots, connected to at-line 
analysers, may be used to autonomously perform the necessary 
processing steps and feed data back to the process. Bioprocess 
Technology at ZHAW has hosted several projects on the develop-
ment and optimization of such sampling systems (NUMERA, by 
Securecell AG), resulting in an automated platform of multiple 
analytical devices, including HPLC, cell counters and ex situ sen-
sors. Evolving from prototype stage in 2016, the system is now 
in routine operation and validated for hygienic (maintaining the 
sterility barrier) and mechanic (low volume handling) demands 
in bioprocessing. It delivers data to several of the advanced con-
trol concepts implemented in the i2BPLab and is constantly ex-
panded by novel methods.

In a similar way, robotic platforms have become inevitable tools 
to merge in silico design strategies with high-throughput, miniatur-
ized processes, e.g. in activity screenings of enzymes for directed 
evolution. The Competence Center of Biocatalysis at ZHAW is 
interlinking algorithm-assisted enzyme engineering, based on e.g. 
machine learning and Bayesian modelling concepts, with expres-
sion assays in fully automated incubation and analysis systems 
(Fig. 7).[12] Different enzyme classes, ranging from epimerases for 
antimicrobial peptide synthesis to PETases for plastic degradation, 
are currently being investigated in the platform.

Data Visualization in Process Environments 
The use of digital tools in process environments extends to 

supporting operators in taking informed decisions in the increas-
ingly automated systems with hard-to-overview data load.[7] For 
efficient work, the key information on process and/or system sta-
tus should be easily accessible from any point in the lab or pro-
duction floor. Augmented reality (AR) applications have in recent 
years become much easier to implement and can resort to off-the-
shelf technical components for building customized solutions. A 
cross-institutional project, anchored in the Digital Transformation 
thematic framework program of the Department of Life Sciences 
and Facility Management evaluates AR-supported visualization 
tools in bioprocess engineering (Fig. 8). Use cases from process 
control to system setup and maintenance are covered. Next to 
visualization technologies, special emphasis is laid on concepts 
for a context-sensitive differentiation between important and less 
critical information to be delivered to the operator.

FHNW, School of Life Sciences, Muttenz

Introduction
A fully automated Nuclear Magnetic Resonance (NMR) 

workflow for structure elucidation of organic molecules is still 
one of the more challenging topics for scientists. The current sta-
tus of NMR workflow digitalization has made enormous prog-
ress in the field of metabolomics and quality control. Fully auto-
mated high-throughput measurement workflows are established. 
Automated sample changers[13] and 24 h measurements exist and 
can be controlled through open source or commercial workflow 
software.[14–18]

Fig. 6. Flow chart of two-phase 
models for the calculation of kLa 
values in bioreactors, with com-
puting effort increasing from left 
to right.[10]

Fig. 7. Automated platforms for algorithm-assisted enzyme engineering 
with high-throughput activity screening. In iterative optimization, refined 
enzyme libraries are created by interlinking in silico methods with physi-
cal experimentation.[12]
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Improving the Signal-to-Noise Ratio
Improving the signal-to-noise ratio (SNR) or denoising of 

NMR spectra is not a new problem and denoising filters have 
been applied for quite a while now. Wavelet transformations 
are one of the dominant tools to achieve substantial noise re-
ductions[20] for FIDs across the board of NMR applications.

Convolutional Neural Networks (CNN) have been used to 
denoise NMR spectra of metabolites in the brain in order to re-
cord 1H-spectra at higher resolution.[21] CNNs are well known 
for image classifications and can be used for a number of image 
driven classification tasks such as a peak picking. 

Other applications of deep learning algorithms have been 
in arterial spin labelling, which is prone to low SNR.[22] Here a 
denoising autoencoder[23] model was used to improve the SNR 
by 62% and reduce artifacts caused by long measuring times. 
Denoising autoencoders (DAE) are deep learning algorithms 
used for handling corrupt data and restore as much information 
as possible.

It must be noted though that the application of deep learn-
ing methods for improving SNR is still in its beginning. The 
publications show that there are substantial benefits and we 
expect to see more activity in the near future.

Automated Peak Picking
The identification of peaks in NMR spectra is a research 

field for almost 30 years.[22] The potential of automated peak 
picking is recognised as an important aspect of the NMR work-
flow to build a high throughput pipeline.

As described the improvement of SNR through wavelet 
transformations is a key component to facilitate an efficient 
peak picking process. An improved SNR allows a threshold ap-
proach, which then doesn’t need input by the user. This forms 
part of the peak picking routine in popular NMR software 
packages such as CCPN,[24] NMRView,[25] and XEASY.[26]

From a machine learning point of view, peak picking is 
a classification task. Early classification efforts were made 
by fitting ellipses to peaks, applying Bayesian statistics[27,28] 
or neural networks.[29] All methods are based on the fact that 
peaks have a different topology than noise or artifacts.

It was shown in principle that machine learning is also able 
to discriminate peaks, but given the lack of computing power 
and more sophisticated algorithms it was not until 2015[30] that 
through the application of Support Vector Machines (SVM) 
peak picking in NMR moved back into the focus for machine 
learning algorithms. 

It is surprising that none of the researched methodologies 
for peak identification has been widely adopted. Despite that 
fact that for a chemical shift assignment, for example of mac-
romolecules, a complete list of peaks is not required. 

All methods described above are applied to multi-dimen-
sional spectra, which are often used for structure elucidation 
of larger molecules. They contain more information such as 
chemical shift and scalar coupling constants between atoms, 
which in turn is helpful for the application of the methods de-
scribed above. What seems to be easy for the trained human 

In situations where the molecules are unknown the inter-
pretation of NMR spectra is still mostly manual. Progress has 
been made to combine machine learning approaches with DFT 
calculations, which has at least shown in principle that a struc-
ture elucidation from first principles could work.

Research work for structure elucidation has shown that an 
automated workflow for the discrimination of diastereoiso-
mers can be fully automated.[19] We have a research project at 
FHNW creating a robust workflow for automatic NMR spec-
trum interpretation.

Workflows in NMR Spectroscopy
NMR spectroscopy is one of the most established and 

widely used analytical instruments in scientific research. It is 
complemented by liquid chromatography-mass spectrometry 
(LC-MS). Contrary to LC-MS the analysis of NMR data is 
dominated by commercial software packages and it is argued 
that there is a fairly large amount of user intervention required 
for data processing.[18] This is the motivation why from time-
to-time open-source projects are starting to address certain 
weaknesses of commercial packages.[18]

A generic workflow for NMR spectroscopy is shown in Fig. 
9, which lends itself to a manual analysis of any NMR spec-
trum or a fully digitalized interpretation. 

The challenge in high-throughput experiments is to auto-
mate or digitalize almost all steps of this generic workflow. 
NMR spectroscopy is a technology, which exhibits a small sig-
nal to noise ratio making certain steps in the pre-processing of 
the data difficult. This becomes apparent especially in metabo-
lomics where either the concentration of the desired metabolite 
is low, the acquisition time is limited or the magnetic field is 
significantly distorted.

A high-quality Free Induction Decay (FID) can therefore 
not always be assumed. This has an impact on subsequent steps 
such as identifying peaks. If the signal to noise ratio is low, 
then it is highly likely that noise or artifacts are selected as 
peaks resulting in wrong outcomes of the interpretation.

Fig. 8. Concept for AR visualization of bioprocess data on mobile de-
vices. In context-sensitive displays, the most relevant key information is 
directly accessible.

Fig. 9. Generic NMR workflow.
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An additional challenge is the representation of the mol-
ecules. NMR shifts are a direct consequence of an atom being 
more or less magnetically shielded by its direct environment. The 
molecular representation, acting as input for the generative meth-
ods, should therefore carry this information. Currently different 
representations are being developed ranging from SMILE type of 
representations to weighted graphs, carrying information about 
magnetic moments.

The immediate focus is on the interpretation of 1D-spectra 
and in order to understand the principles of the generative models 
13C-spectra in particular are investigated. The absence of multi-
plets makes the annotation of the training date simpler and it is 
hoped to understand more about the required molecular repre-
sentations.

Summary and Outlook
The digitalization of NMR workflows, i.e. the acquisition, 

processing and interpretation of NMR data, has come a long way 
and is going to experience a further boost through machine learn-
ing. The promise of quick turnarounds for analytical purposes as 
well as building fully digitalized high-throughput NMR pipelines 
is very attractive.

Research on 1D-NMR spectra is scarce, but the short time 
frame to acquire 1D-spectra, e.g. sufficient for structure elucida-
tion, is very low. Multi-dimensional spectra take time to acquire 
and make high-throughput scenarios difficult to achieve. In order 
to exploit the potential of machine learning further, more high-
quality NMR spectra and data in one and higher dimensions must 
be made available in databases.

Through a combination of DFT calculation of machine learn-
ing algorithms it was shown that NMR spectra can in principle 
be interpreted automatically. The realization that NMR interpre-
tation is an inverse problem can be considered as a step in the 
right direction. If the need for DFT calculations can be eliminated 
through a different approach to solve the inverse problem, then a 
high-throughput process can be most likely established. Applying 
generative models for NMR spectra interpretation could be the 
right step to avoid DFT calculations in the future.
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eye is an inherently difficult task for any type of peak picking 
algorithm. Often poor SNR, overlapping peak areas, baseline 
distortions or many other factors introduce noise.

It is therefore very promising that the application of CNNs 
as described in ref. [30] has achieved for the considered data 
set a high accuracy of about 90% in identifying peaks cor-
rectly. This can be considered as human level accuracy. For 
the analysis multi-dimensional spectra were used in order to 
have more data available and a threshold for signal intensity 
had to be applied.

Research is under way to achieve a similar level of clas-
sification for 1D-NMR spectra.[31]

Interpretation of NMR Spectra
Structure elucidation is, after the peak picking process, an-

other difficult to automate task. Currently it is a mostly manual 
process, which is supported and guided by sophisticated com-
mercial or open-source software. This process is difficult to 
speed up and a big hurdle for high throughput experiments 
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learning together with DFT calculations. With the latter the 
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sion about the structure of the molecule. A search in the so-
called chemical space of potential structures based on DFT 
calculations is not only prohibitively time consuming, but also 
not an elegant approach to this problem.

An interesting approach was taken in ref. [33] to apply ma-
chine learning and DFT to determine the stereochemistry of 
a natural product. Here the principal structure of the product 
is known, but not its stereochemistry. The number of stereo-
isomers (or diastereoisomers in this particular case) is known, 
which allows the problem to be tackled by DFT calculations. 
The results are very precise and the authors report an impres-
sive 60-fold increase in processing speed.
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From a conceptual mathematical point of view the inter-
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