Supporting Information

Structure Elucidation of a Cryptic Condensation Product from Diacetyl and Arylamine - Then and Now

Lukas Hintermann

Technische Universität München, Department Chemie, Lichtenbergstrasse 4

and

Catalysis Research Center, Ernst-Otto-Fischer-Strasse 1

85748 Garching bei München

lukas.hintermann@tum.de

1 Syntheses and substance data

1.1 1-(2,5-Dimethyl-1-(p-tolyl)-4-(p-tolylamino)-1H-pyrrol-3-yl)ethanone (4a)^[1,2]

p-Toluidine (5.35 g, 50 mmol) was placed into a 50 mL round-bottom flask containing a magnetic stirring bar. Concentrated 85% phosphoric acid (25 mL) was added with stirring. The flask was placed into an oilbath at 50 °C and the suspension stirred until completely dissolved. Diacetyl (5.15 mL, 59 mmol) was added dropwise over 5 minutes with stirring. The oil-bath was heated to 70 °C and the reaction mixture stirred for 24 hours. The cooled solution was poured into 250 mL deionized water and stirred, forming a turbid suspension that was stirred for 1 d at r.t. Vacuum filtration (which took several hours, since the filter was partly blocked by the fine solid) and washing of the solid with water and a little EtOH–H₂O (1:1) gave 4.44 g of crude ochre material.³ This material was boiled with 50 mL of EtOH and the mixture filtered through a glass-filter. The solid on the filter was washed with additional hot EtOH to leave some bright tan yellow microcrystalline solid (265 mg, m.p. 152–153 °C). The filtrate was evaporated to ca 15 mL in a rotatory evaporator. After stirring in an ice-bath, it was filtered and the solids washed with EtOH to give ochre solid (965 mg, m.p. 151–152 °C); the two fractions have identical NMR spectra; combined yield 1.23 g (15%).

¹ F. Christen, B. Prijs, H. Lehr, *Helv. Chim. Acta* **1949**, *32*, 56.

² F. Christen, Zur Kenntnis von biologisch wirksamen Kondensationsprodukten aus primären aromatischen Aminen, Dissertation, Universität Basel, **1946**.

³ According to ¹H NMR, the crude material consists mainly of pyrrole **4a** and a little polymeric material (broad signals) with no indication of clearly discernible signal sets for other lower molecular compounds.

 R_f 0.40 (EtOAc–hexanes 1:3); m.p. 151–152 °C (from EtOH) [Lit. 146.5 °C]^[1]; 152–153 °C (EtOH-washed precipitate from H_2O); ¹H NMR (500 MHz, CDCl₃): δ 1.80 (s, 3 H, Me), 2.23 (s, 3 H, Me), 2.29 (s, 3 H, Me), 2.39 (s, 3 H, Me), 2.44 (s, 3 H, Me), 5.92 (br s, 1 H, NH), 6.56–6.61 (m, 2 H, ArH), 6.95–7.00 (m, 2 H, ArH), 7.07–7.11 (m, 2 H, ArH), 7.28–7.32 (m, 2 H,

ArH); ¹³C APT NMR (76 MHz, CDCl₃): δ 10.58 (CH₃), 13.60 (CH₃), 20.44 (CH₃), 21.20 (CH₃), 30.36 (CH₃), 113.97 (CH), 117.55 (C), 122.87 (C), 123.91 (C), 127.14 (C), 127.97 (CH), 129.65 (CH), 130.08 (CH), 133.73 (C), 134.73 (C), 138.70 (C), 145.06 (C), 195.65 (C=O). ¹⁵N NMR (51 MHz, CDCl₃; by ¹H, ¹⁵N-HMBC): δ 63 (R₂NH), 174 (pyrrole).

left: sample recrystallized from EtOH; right: partially undissolved material left on filter

NMR sample in CDCl₃.

¹H NMR (500 MHz, CDCl₃) of 4a - Excerpts

Table S-1. NMR data and assignments for 4a

	δ(13C)a	n	Туре	δ(¹H) ^b	Mult.	Н	δ(¹H) by HSQC°	HMBC strong ^b	HMBC weak ^b
	CDCl ₃		APT	500 MHz			(mult, J/Hz)		
	10.58	1	CH₃	1.80	s	3	1.80	123.9, 122.9 (?)	117.5, 144.9, 133.7 (vw)
	13.60	1	CH₃	2.29	s	3	2.30	133.7, 117.6	195.4
	20.44	1	CH₃	2.23	s	3	2.25	130.1 (129.6?), 127.2	145.1, 113.9, 138.8
	21.20	1	CH ₃	2.44	s	3	2.44	130.1, 139.0	
	30.36	1	CH₃	2.39	S	3	2.40	195.4, 117.7	
	113.97	2	СН	6.58	m	2	6.59	127.15, 114.0	145.0
	117.55	1	С				_		
	122.87	1	С				_		
	123.91	1	С				_		
	127.14	1	С				_		
	127.97	2	CH	7.09	m	2	7.10	128.0, 138.7,	134.8
	129.65	2	СН	6.97	m	2	6.98	20.3, 145.0, 129.7	113.9
	130.08	2	CH	7.30	m	2	7.30	21.2, 130.1, 134.7	
	133.73	1	С				_		
	134.73	1	С				_		
	138.70	1	С				_		
	145.06	1	С				_		
	195.65	1	C=O				_		
NH			NH	5.92	S	1			
		C ₂₂	$C_{22}H_{24}N_1O_1^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			H ₂₄			

a) APT at 76 MHz. b) At 500 MHz. c) At 300 MHz. (Ir) = long-range, (vw) = very weak. *) Partial sum formula based on spectroscopically proven fragments as listed in the column. A second nitrogen was proven by ¹H, ¹⁵N-HMBC.

¹H NMR (500 MHz, CDCl₃) of 4a – Full range

$^{13}\mathrm{C}$ APT NMR (76 MHz, CDCl₃) of 4a

¹H, ¹⁵N-HMBC (500 MHz, CDCl₃) of 4a

1.2 *N*-(4-Acetyl-2,5-dimethyl-1-(*p*-tolyl)-1*H*-pyrrol-3(2*H*)-ylidene)-4-methylbenzen-aminium 2,2,2-trifluoroacetate (5a)

Me
$$N$$
 Me N M

A sample of pyrrole 4a (29.2 mg, $87.8 \mu mol$) was placed into an NMR tube and dissolved in CDCl₃ (550 μ L). Trifluoroacetic acid (20 μ L, 260 μ mol, 3 equiv.) was added by microliter syringe and the sample homogenized by shaking. The color turned from yellow to brown with yellow-red tones.

¹H NMR (500 MHz, CDCl₃) of 5a – Excerpts

Table S-2. NMR data and assignment for 5a

Pos.	δ(13C)a	n	Туре	δ(¹H) ^b	Multiplicity	Н	∂(¹H) by HSQC ^b
	CDCl ₃		APT	500 MHz	(Hz)		(mult, J/Hz)
	12.88	1	CH ₃	1.11	d (7.2)	3	1.11
	17.28	1	CH ₃	2.57	d (1.6)	3	2.58
	21.03	1	CH ₃	2.37	S	3	2.37
	21.12	1	CH₃	2.41	s	3	2.42
	29.86	1	CH ₃	2.548	S	3	2.55
	66.49	1	СН	5.66	qqd, (7.2)	1	5.67
	109.44	1	С	_			-
	115.48	1	CF ₃		q (J _{F,C} 282)		_
	123.26	2	СН	7.30	d (8.6)	2	7.30
	126.93	2	CH	7.21	d (8.3)	2	7.20
	130.63	1	С	_			_
	131.05	2	СН	7.27	d (8.6)	2	7.27
	131.13	2	CH	7.34	d (8.1)	2	7.34
	132.82	1	С	_			_
	139.78	1	С	_			_
	141.57	1	С	-			_
	159.96	1	CF ₃ CO ₂	_	q (J _{F,C} 39.0)		_
	176.58	1	С	_			_
	177.60	1	С	_			_
	195.15	1	C=O	_			_
NH			NH	12.45	s	1	
ОН			CO ₂ H	14.44	s	_	excess TFA, not 5a
		C ₂₄	C ₂₄ H ₂₅ F ₃ N ₁ O ₃ *			H ₂₅	

a) APT at 100 MHz. b) 500 MHz. (Ir) = long-range. *) Partial sum formula based on spectroscopically proven fragments as listed in the column. A second nitrogen was proven by ¹H, ¹⁵N-HMBC.

¹H NMR (500 MHz, CDCl₃) of 5a – Full range

 δ_{H} 14.44 is due to excess CF₃CO₂H. EtOH is remaining recrystallization solvent in **4a**, which forms CF₃CO₂Et in situ.

¹³C APT NMR (76 MHz, CDCl₃) of 5a

TFA = trifluoroacetate and trifluoroacetic acid

¹H, ¹⁵N-HMBC (500 MHz, CDCl₃) of 5a

1.3 N-(4-Acetyl-2,5-dimethyl-1-(p-tolyl)-1H-pyrrol-3-yl)-N-(p-tolyl)acetamide (= N-Acetyl derivative of 4a)^[1]

A sample of **4a** (281 mg, 0.85 mmol) was stirred in toluene (9 mL) with addition of acetyl chloride (1.5 mL, excess) to give a clear solution. Powdered K₂CO₃ (1.5 g) was added with stirring, inducing an exothermal reaction. The mixture was stirred for 15 min at r.t., then for 30 min at 50 °C. The mixture was diluted with EtOAc and transferred to a separatory funnel. Washing of the organic phase with aq Na₂CO₃, drying over Na₂SO₄, filtration, evaporation gave a brown resin which freely dissolved in EtOH without crystallization. Upon evaporation in the hood the material formed brown resin, which crystallized very slowly over 2 weeks.

The semisolid was triturated with hexanes (4 mL) and *t*BuOMe (6 mL) and set aside for 2 days. The material was irradiated in an ultrasonic cleaning bath for 2 x 40 min, and solid blocks were ground to give powdery suspended material using a spatula. Supernatant solvent was removed using a pipette and the solid was washed with *t*BuOMe. The bright tan powder was used for analysis.

The sample displayed broadened ¹H and ¹³C NMR signals presumably due to chemical exchange by amide rotation. The H-Ar signals are not well separated, and methyl group singlets partially overlapping.

Consequently, the material was not useful to the structure elucidation.

 $R_f = 0.19$ (EtOAc–hexanes 1:1); m.p. 146.0–146.5 °C [Lit. 142.5–143.0 °C]; ^[1] ¹H NMR (300 MHz, CDCl₃): δ 1.87 (s, 3 H), 2.13 (s, 3 H), 2.31 (s, 6 H, 2 Me), 2.33 (br s, 3 H), 2.44 (s, 3 H), 7.03–7.15 (br m, 4 H), 7.21–7.36 (br m, 4 H). ¹³C APT NMR (76 MHz, CDCl₃): δ 9.9 (br, CH₃), 13.5 (br, CH₃), 20.9 (CH₃), 21.2 (CH₃), 24.0 (br, CH₃), 30.0 (br, CH₃), 117.4 (br C), 123.1 (C), 123.7 (br, CH, 2 C), 126.9 (br, C), 127.8 (br, CH, 2 C), 129.1 (br, CH, 2 C), 130.3 (br,

CH, 2 C), 134.0 (br, C), 134.5 (br, C), 139.3 (br, C, 2 C), 171.6 (C), 194.1 (C), with additional information from HSQC and HMBC; 1 signal not detected.

* Exchangeable assignments

$^{1}\mathrm{H}$ NMR (300 MHz, CDCl₃) of N-acetyl derivative

¹³C APT NMR (76 MHz, CDCl₃) of N-acetyl derivative

