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Abstract: Drug discovery is in constant need of new molecules to develop drugs addressing unmet medical 
needs. To assess the chemical space available for drug design, our group investigates the generated databases 
(GDBs) listing all possible organic molecules up to a defined size, the largest of which is GDB-17 featuring 
166.4 billion molecules up to 17 non-hydrogen atoms. While known drugs and bioactive compounds are mostly 
aromatic and planar, the GDBs contain a plethora of non-aromatic 3D-shaped molecules, which are very useful 
for drug discovery since they generally have more desirable absorption, distribution, metabolism, excretion and 
toxicity (ADMET) properties. Here we review GDB enumeration methods and the selection and synthesis of GDB 
molecules as modulators of ion channels. We summarize the constitution of GDB subsets focusing on fragments 
(FDB17), medicinal chemistry (GDBMedChem) and ChEMBL-like molecules (GDBChEMBL), and the ring system 
database GDB4c as a rich source of novel 3D-shaped chiral molecules containing quaternary centers, such as 
the recently reported trinorbornane.
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1. Introduction
Discovering new drugs to address unmet medical needs is es-

sential to the progress of modern medicine.[1,2] To assist drug dis-
covery one often uses the concept of the chemical space, which 
describes all molecules of possible interest as drugs by placing 
them in a logically organized search space according to their 
structural and functional similarities.[3,4] Chemical space contains 
all molecules that are already known, which includes thousands 
of approved and experimental drugs such as those in DrugBank[5] 
and millions of molecules with reported biological activities such 
as those reported in ChEMBL[6] and PubChem,[7] plus a very large 
number of theoretically possible drug-like compounds, such as 
the products obtainable by combining known building blocks 
through known reactions. Millions of these so-called screening 
compounds are offered by commercial providers and explicitly 

listed on the ZINC website,[8] while many more are in principle 
possible as described in public databases such as SCOBIDOO[9] 
and proprietary projects such as Pfizer’s PGVL[10] or Merck’s 
MASSIV chemical space.[11–13] 

Beyond these systematic combinations of building blocks, 
one can reach more deeply into chemical diversity by ask-
ing how many of the building blocks might be derived from 
first principles by assembling atoms through covalent bonds 
following the rules of organic chemistry. We have taken this 
approach in our chemical space project by enumerating all 
possible molecules up to a certain size to form the generated 
databases GDBs,[14] the largest of which is GDB-17 compris-
ing 166.4 billion molecules up to 17 atoms of C, N, O, S and 
halogens following simple rules of chemical stability and syn-
thetic feasibility.[15] Herein we review our recent progress in 
this approach and discuss the chemical diversity of GDBs in 
the perspective of 3D-shaped molecules and building blocks 
for drug discovery.

2. Enumeration and Properties of GDB Molecules
The structure of every organic molecule is derived from a par-

ent mathematical graph whose nodes correspond to non-hydrogen 
atoms and whose edges correspond to covalent bonds. To enu-
merate all possible molecules, one can simply start with a list of 
all possible graphs and write out, for each graph, all chemically 
meaningful combinations of atom and bond types, adding hydro-
gen atoms to complement valency. One usually writes out each 
molecule using SMILES (Simplified Molecular Input Line-Entry 
System), a compact computer-readable format, optionally includ-
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A very attractive feature of the GDBs is that they represent 
an exhaustive coverage of chemical space under a defined set of 
rules. The database GDB-13 was recently used to evaluate the 
ability of molecular generative neural networks (MGNNs) to ex-
haustively cover chemical space.[22] This study showed that an 
MGNN trained with a random subset of one million molecules 
from GDB-13 (0.1% of the database) is capable of covering 70% 
of the entire GDB-13 when generating 2 billion molecules.[23] 
Creating twice the database size is necessary due to the genera-
tion of duplicates. The performance increased to 83% when using 
randomized SMILES rather than canonical SMILES to represent 
the molecules.[24] Moreover, only 4.7% of the molecules gener-
ated by the MGNN are outside the GDB-13 chemical space (Fig. 
1b). This study suggests that the exhaustive exploration of chemi-
cal space by enumeration as realized with the GDBs might in 
future be realized in targeted manner by using MGNNs trained 
with specific sets of molecules.

Almost all molecules in the GDBs (>99.9%) are outside 
the known chemical space, simply as a consequence of the 
very large number of molecules in the databases, which far 
exceeds the number of molecules of similar size in databases 
of known molecules such as PubChem. GDB molecules feature 
a diversity of ring system and functional group combinations 
spanning a broad range of molecular properties. One can gain 
an overview of GDB molecules by considering MQN-maps, 
which are obtained by computing the 42 Molecular Quantum 
Numbers (MQN, counts of types of atoms, bonds, polar groups 
and topological features) for each molecule and representing 
the first two principal components of a principal component 
analysis (PCA) of the dataset.[25,26] The resulting map can be 
color-coded as a function of various molecular properties (mo-
lecular size, number of rings, etc.) and inspected interactively 
using a dedicated MQN-mapplet application.[27] For example, 
color-coding GDB-13 by molecular categories illustrates that 
the database comprises a very broad diversity of heterocycles, 
while aromatic and heteroaromatic molecules are relatively 
rare (Fig. 1c).[28]

ing stereochemical information to explicit all possible stereoiso-
mers.[16] SMILES can be converted to molecular drawings using 
specific programs such as SmilesDrawer.[17]

The enumeration of molecules from graphs is possible thanks 
to the existence of the program GENG, which produces the start-
ing list of graphs.[18] For example, GENG produces 843,335 con-
nected graphs up to 11 nodes with a maximum node connectivity 
of four. Applying simple ring strain criteria reduces the list to 
15,726 graphs corresponding to chemically possible saturated 
hydrocarbons. One then converts these saturated hydrocarbons to 
more molecules by combinatorially enumerating, under consid-
eration of valency rules, all combinations of single, double and 
triple bonds at the graph edges and carbon, oxygen, nitrogen and 
fluorine at the graph nodes. This enumeration produces 1.7 billion 
molecules. One finally applies rules to remove molecules with 
chemically unstable functional groups (peroxides, gem-diols, 
enols, bridgehead double bonds, etc.), which finally leaves 26.4 
million molecules, corresponding to 111 million individual ste-
reoisomers, forming the chemical universe database GDB-11 list-
ing all possible molecules up to 11 non-hydrogen atoms following 
the chosen selection criteria (Fig. 1a).[19,20] 

In the enumeration of GDB-11 all possible Lewis structures 
are written out and subsequently evaluated. This approach is not 
feasible for larger molecules due to the exponential increase in 
the number of molecules as a function of molecule size. By modi-
fying the code such that certain undesirable molecules are not 
written out in the first place makes it possible to obtain the much 
larger databases GDB-13, listing 977 million molecules up to 13 
atoms of C, N, O, S, and Cl , and GDB-17, listing 166.4 billion 
molecules up to 17 atoms of C, N, O, S, and halogens and forming 
the largest explicitly enumerated database of small molecules to 
date.[15,21] In the case of GDB-17, very drastic selection rules are 
used to select the graphs above 15 nodes to avoid a combinatorial 
explosion in the number of enumerated molecules. For example, 
only one 3- or 4-membered ring is allowed at 16 nodes and no 
small rings at all at 17 nodes. Furthermore, no non-aromatic car-
bon–carbon double bonds are allowed at 17 nodes. 
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tein target; 3) selection from the list of best docking compounds 
according to synthetic feasibility and novelty. The first proof-of-
principle of this approach was demonstrated for inhibitors for the 
glycine binding site of the NMDA receptor, which uncovered di-
peptides 1 and 2 and diketopiperazine 3 as three novel inhibitors 
of this ion channel (Fig. 2a).[35,36] 

The second project was directed at the glutamate transporter 
GLT-1, also known as EAAT2, which was interesting because 
known inhibitors such as WAY-855, investigated as possible drugs 
to treat ischemic stroke injury, are typical GDB-like 3D-shaped 
molecules.[37] Here a subset of GDB-11 was selected containing 
saturated primary and secondary amines. For each amine, two car-
boxyl groups were added at the α- and β- or γ-carbon atoms rela-
tive to the amino group to obtain analogs of aspartate or glutamate, 
which are both recognized by the transporter. Virtual screening by 
docking to the bacterial glutamate transporter homologue from 
Pyrococcus horikoshii (PDB code: 1XFH) and inspection of the 
best docking compounds indicated that yet unknown norbornane 
aspartate analogs such as 4 were among the best performing dock-
ing compounds. The exo-stereoisomer rac-5, found to be a weak 
GLT-1 inhibitor and was prepared starting from cyclopentadiene 
and dimethyl acetylene dicarboxylate by a Diels-Alder cycloaddi-
tion to form the norbornadiene 6. Michael addition of ammonia and 
protection of the amine formed a mixture of stereoisomeric bicy-
clic aspartates from which stereoisomer 7 was separated. Finally, 
rac-5 was obtained by xo-stereoselective hydroformylation of the 
remaining norbornene double bond to form aldehyde 8 followed by 
a Wittig olefination. Further optimization led to the benzyl analog 
rac-10, obtained by hydrogenation and deprotection of the Wittig 
product 9, as the best inhibitor in the series with comparable activ-
ity to WAY-855 but better selectivity against EAAC1 (Fig. 2b).[38]

A striking difference to the known chemical space is that the 
fraction of aromatic molecules is much lower in the GDBs than in 
databases of known molecules. Furthermore, compared to known 
molecules, a much larger percentage of GDB molecules have a 
high fraction of sp3-carbon atoms, are rich in stereocenters, and 
have significant 3D-shape. The prevalence of 3D-shaped mol-
ecules in the GDBs is illustrated here for GDB-17 by plotting 
the molecules in the shape triangle representing the principal mo-
ments of inertia allowing to categorize the molecules as rod-like, 
disk-like or sphere-like (Fig. 1d).[29] 3D-shape in GDB molecules 
results from the presence of many asymmetric and quaternary 
carbons as well as saturated and bridged polycyclic systems. 
3D-shape is also very typical of natural products and is generally 
considered a desirable feature in medicinal chemistry as means to 
escape out of ‘flatland’,[30] and obtain molecules with higher se-
lectivity and lower toxicity.[31] In addition to their 3D-shape, GDB 
molecules generally obey Lipinski’s rule of 5 for oral bioavail-
ability,[32] and also pass criteria of lead-likeness[33] and fragment-
likeness,[34] implying that the majority of GDB molecules are of 
interest for medicinal chemistry.

3. Selection and Synthesis of Bioactive GDB 
Molecules

GDB molecules have been to date mostly synthesized in our 
group for medicinal chemistry projects aiming to identify new 
modulators of ligand gated ion channels and transporters for 
which substrates and inhibitors are small molecules in the size 
range covered by GDB. Molecules were selected from the GDB 
by a three-step procedure involving: 1) selection of a subset of 
GDB according to functional group and property choices; 2) vir-
tual screening by docking to the binding pocket of a known pro-
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different molecular shingles, which are the elements encoded in 
MHFP6, a structural fingerprint similar but superior to the classi-
cal ECFP4 in terms of virtual screening performance.[46–48] Note 
that the number of different molecular shingles is significantly 
higher in GDB-17 and the three subsets thereof compared to mol-
ecules of similar size in public databases, illustrating the broader 
structural diversity available in GDB molecules (Table 1). This 
structural diversity is particularly striking for GDBChEMBL be-
cause this subset was created by selecting GDB molecules with a 
threshold fraction of molecular shingles also occurring in bioac-
tive ChEMBL molecules.

5. The Ring Systems Database GDB4c
Ring systems can be defined as what remains after removing 

all acyclic atoms and bonds in a molecule and converting all atoms 
to carbon. As noted already in 2007 with GDB-11, there is strik-
ing novelty in the GDB at the level of ring systems. Indeed, not 
only has the vast majority of molecules never been synthesized, 
but even the majority of ring systems are not exemplified in any 
known molecule. The database GDB4c provides a very exten-
sive insight into the potential for novel rings systems by listing 
916,130 ring systems up to four rings that are possible under a set 
of constraints (max. ring size 14, max. 2 rings larger than 6, max. 
one ring larger than 7, no atoms shared by two 3- or 4-membered 
rings for tetracyclic ring systems) including optional aromatiza-
tion of 5- and 6-membered rings whenever possible.[49]

When considering the 79,502 ring systems that can be identi-
fied in known molecules (ZINC, PubChem, ChEMBL and Reaxys 
combined) without constraints for ring size or number of rings, 
collected in a reference database (RDB), one finds that only 
12,536 of these comply with the constraints of GDB4c, which 
implies that 98.6% of the rings systems in GDB4c are novel. Note 
that the occurrence of ring systems in known molecules follows a 
power law, with benzene alone accounting for 50% of occurrences 
and the ten most abundant ring systems accounting for nearly 90% 
of all occurrences, which shows that known molecules are particu-
larly poor in ring system diversity. 

While aromatic rings are very abundant in RDB (46.9%), il-
lustrating that planarity dominates in known molecules, 79.5% 
of the ring systems in GDB4c do not contain any aromatic rings 
and are therefore 3D-shaped. Note that while ring systems with 
a six-membered ring as largest ring are most abundant in RDB, 
the majority of GDB4c ring systems are macrocycles (ring size 
≥ 8). The ring systems database is also available as GDB4c3D 
containing the 3D-structure of the 6,555,929 stereoisomers de-
rived from GDB4c. In GDB4c3D ring systems are labelled with a 
number, called p-value that reflects the overall ring strain as mea-

The third project exploited the fact that GDB is extremely 
rich in 3D-shaped cyclic and polycyclic amines by attempting to 
identify new analogs of PNU-282,987 or SSR180711, which are 
both partial agonist of the α7 nicotinic acetyl choline receptor 
(nAChR) investigated to treat various neurological disorders due 
to their effect on memory improvement. The aim was to replace 
the bicyclic diamine core of both compounds with a new diamine 
from the GDB. To identify suitable diamines, all possible mono-
cyclic and bicyclic aliphatic diamines containing one tertiary and 
one primary or secondary amine were extracted from GDB-11. 
The benzamides and carbamates corresponding to the parent drugs 
were then virtually formed and docked to the acetylcholine bind-
ing protein (AChBP) from Lymnaea stagnalis (PDB code: 1UW6) 
as a model for the α7 nAChR. Twenty-one interesting cyclic di-
amines were then selected from the best docking compounds, 
synthesized, acylated with various benzoic acids, and tested on 
the α7 nAChR, which uncovered several new inhibitors such as 
11, 12 and (R,S)-13 (Fig. 2c). An additional screening against the 
α3β2 nAChR, a receptor subtype for which no modulators were 
known, uncovered the first positive allosteric modulators (PAM) 
of this receptor subtype in form of benzamides 15, rac-16 and 
rac-17.[39] Interestingly in this case a subsequent MQN-similarity 
search for new analogs of PNU-282,987 in the database ChEMBL 
followed by optimization led to the identification of N-benzyl-
aminoquinuclidine (R)-18 as a much more potent PAM for this 
receptor, illustrating that many unexplored possibilities also exist 
within databases of known molecules.[40]

4. Characterization of the GDB Subsets 
Due to the combinatorial nature of the enumeration, the most 

abundant GDB molecules are those with most functional groups 
and chiral centers, which are also the most challenging to synthe-
size. To facilitate the selection of realistic synthetic targets, one 
should select GDB subsets focusing on molecules with reduced 
complexity. For example, the GDB-13 database containing almost 
one billion molecules is also available as a subset of 43.7 million 
molecules from which problematic substructures (N–N and N–O 
bonds, aldehydes, esters, carbonates, sulfates, epoxides, aziridi-
nes, non-aromatic C=C, all C≡C, 3- and 4-membered rings) have 
been removed.[28] This subset retains sufficient diversity for the 
search of new drugs, as illustrated by the discovery of new α7 
nAChR modulators among nicotine analogs,[41] and can even be 
further reduced to only 12.9 million molecules by considering 
only fragment-like molecules. Another GDB-13 subset of 59.5 
million molecules features only molecules with fragrance-like 
properties.[42]

The above subsets reduce functional group density but do 
not correct for the overabundance of the stereochemically most 
complex, most functionalized and largest molecules in GDB-13. 
A better distribution of molecules across size, functional group 
and stereochemical complexity is achieved in three recent subsets 
of GDB-17, each containing only 10 million molecules featuring 
fragments (fragment database FDB17),[43] molecules relevant for 
medicinal chemistry (GDBMedChem),[44] or molecules similar to 
bioactive compounds in ChEMBL (GDBChEMBL) (Fig. 1e).[45] 
In these three cases GDB-17 was first filtered by applying struc-
tural filters similar to those discussed above for GDB-13 to form 
smaller subsets of a few billion molecules. These subsets were 
then binned according to molecular size, number of stereocenters 
and number of heteroatoms, and sampled evenly across these pa-
rameters to form collections of 10 million molecules. 

Despite of the severe limitations on diversity imposed by the 
selection and sampling procedure, the three GDB-17 subsets re-
tain the distribution of 3D-shaped molecules of the parent da-
tabase, as illustrated for example by the fraction of sp3-carbon 
atoms (Fig. 1f). Furthermore, the subsets retain a very high struc-
tural diversity. This can be illustrated by counting the number of 

Table 1. Shingle count comparison of GDB-17 subsets vs. 10 M 
collections of ZINC and PubChem compounds up to 17 heavy atoms.

Database Total 
shingles

Shingles  
unique to db

GDB-17a 33,036,456 22,433,445

FDB17b 29,135,003 20,732,026

GDBMedChemc 24,280,303 15,558,424

GDBChEMBLd 22,463,337 14,952,479

ZINCe 2,455,487 863,571

PubChemf 12,750,754 9,437,808

aGDB-17: 10 M uniform sample; bFDB17: 10.1 M; cGDBMedChem: 9.9 M; dGDB-
ChEMBL: 9.8 M; eZINC: 10 M uniform sample, HAC ≤ 17; fPubChem: 10 M uniform 
sample, HAC ≤ 17.
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sured by the deviation of bond angles from their optimum value. 
Interestingly, the distribution of p-values in GDB4c3D is com-
parable to that among known ring systems (RDB3D) and among 
molecules from the Cambridge Structural Database (CSD), which 
shows that GDB4c molecules do not have a particular ring strain 
compared to known molecules (Fig. 3a). 

Much of the novelty of GDB4c lies in intrinsically chiral, 
3D-shaped ring systems with unusual topologies often including 
quaternary centers (Fig. 3b). A striking example is trinorbornane 
19, which was noted as an original but yet unknown ring system 
in GDB-11 in 2007,[20] and has been synthesized by the group 
of Marcel Mayor in Basel in 2017 using an eight-step sequence. 
Unsaturated ketone 20 was converted into cyclopentadiene, 
which reacted in an intramolecular Diels-Alder reaction to form 
the central norbornane and one of the external norbornanes (21) 
simultaneously. Radical ring closure yielded the third norbornane 
unit of trinorbornane 19 (Fig. 3c).[50] Similarly 3D-shaped, chiral 
ring systems containing a quaternary center also occur in natural 
products, as exemplified here with the tricyclic ring system 22 
found in the recently discovered Crokonoid A (23).[51] Further 
3D-shaped chiral ring systems that are typical of GDB4c but are 
already known include twistane 24 obtained by intramolecular 
α-alkylation of a [2.2.2]bicyclooctanone 25 and deoxygenation 
of 26,[52] and tris-homocubane reported as the trioxa tris-homo-
cubane 27 resulting from epoxidation of barrelene 28 followed 
by acid-catalyzed cyclization of the symmetrical triepoxide ste-
reoisomer 29.[53]

6. Conclusion and Outlook
The GDBs offer an overwhelming diversity of new molecules. 

In previous projects synthetic targets were selected to achieve 
specific bioactivities by choosing molecules according to their 
similarities to known bioactive compounds and to their predicted 
binding affinities to a target protein. In all cases synthetic consid-
erations limited choices to the small fraction of GDB molecules 
that were not only novel but also simple to synthesize. These syn-
thetic considerations led to the idea of defining smaller subsets of 
the GDBs to facilitate the identification of interesting yet feasible 

molecules. Similarity search portals are freely accessible at http://
gdb.unibe.ch to search the GDBs by similarity to any molecule of 
choice. GDB subsets can also be explored in undirected manner 
using interactive layouts such as Faerun and TMAP accessible at 
the same website.[54,55] We are currently synthesizing GDB mol-
ecules identified using these search tools as novel building blocks 
for medicinal chemistry to be later functionalized to achieve spe-
cific target activities. 
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