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Abstract: In the context of the prediction of the (in-)stability of chemical compounds using machine learning 
tools, we are often confronted with a basic issue: Whereas much information is available on stable (existing) 
compounds, little is known about compounds that might well exist, but that have not yet been successfully 
synthesized, or compounds that are inherently unstable (kinetically and thermodynamically). In the search for 
Togni-type reagents, many of them kinetically instable, the stability of the prospects can be assessed based on 
the transition state for the conversion to their non-hypervalent inactive isomer. In earlier work, we determined the 
barriers of conversion for over one-hundred reagents, still not enough information to train a tool such as a vector 
support machine. Here, instead, we focus on the early intermediate structures expressed along the isomerization 
pathway, i.e. transition state searches are replaced by finding (local) minima. Based on an array of 382 Togni-type 
reagents whose behaviour was known in advance, we show that it is possible to have the machine predict the 
intermediate form expressed. The approach introduced here can be used to make predictions on the stability 
and possibly also the reactivity of Togni-type reagents in general. 
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1. Introduction 
In organic synthesis, hypervalent iodine reagents (‘iodanes’), 

such as Togni’s reagent (see structure a in Fig. 1), have become 
very established for the transfer of electrophilic substituents to 
arenes or other nucleophiles.[1] In the case of Togni’s reagent, the 
substituent transferred is a trifluoromethyl group (CF

3
), but many 

other reagents of this type have been reported.[2] Based on the 
choice of electrophilic substituent and modification of the benzo-
iodoxole scaffold, many more reagents can be designed. Given the 
large number of candidate reagents, hundreds if not thousands, the 
prediction of their stability and reactivity becomes a potentially 
rewarding venture, also for computation.[3] 

The Togni-type reagents all contain a five-membered hetero-
cycle ring, which is part of the benziodoxole scaffold, and which 
carries the iodine atom and the second ligand (oxygen, in case of 
the original reagent; see structure a in Fig. 1). The electrophilic 
substituent E, the iodine atom I, and the second ligand L (also 
referred to as leaving-group) express the 3-center bond typical for 
iodanes (denoted E-I-L bond in this article). The 3-center bond 
was shown to be responsible for much of the reactivity of the io-
danes.[4] For an extensive discussion of the structure and bonding 
in iodanes see ref. [5].

With the advances of machine learning, data-driven model-
ling has become an option to expedite the search of promising 
derivatives from a lead such as the Togni reagent. However, it of-
ten turns out that the data-situation is an obstacle: Whereas much 
information is available on existing compounds, there is very little 
information on compounds that are not stable, even if it is for a 
good reason, or that have not been synthesized successfully. This 
also applies to the Togni reagent and its derivatives. 

In an attempt to improve the data situation, we computation-
ally determined the stability of an array of well over one-hundred 
Togni-type reagents. For many of the reagents, the hypervalent 
iodine form is only kinetically stable,[6] i.e. protected by a barrier 
from conversion to a thermodynamically more stable, but inac-
tive non-hypervalent isomeric form (structure b in Fig. 1). In this 
conversion, the electrophilic substituent E is transferred towards 
the ligand L locked into the 5-membered-ring heterocycle, to form 
a new E-L bond. The intramolecular transfer of E towards L oc-
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in trifluoromethylation reactions with Togni’s reagent the transfer 
of the CF

3
 group to the nucleophile can not be attributed to a single 

clearly defined reaction mechanism. Instead, the reactions might 
proceed through several concomitant mechanisms of similar prob-
ability. The study also showed that the out-of-plane mechanism via 
an iodonium-like intermediate thus may offer an alternative which 
is lower in energy than the in-plane path, and which may be avail-
able only to specific reagents. The enhanced mobility of the CF

3
 

group might be part of the explanation why Bronsted activation 
of Togni’s reagent leads to higher reactivity towards nucleophiles. 

Seeking to categorize an array of Togni-type reagents with re-
spect to the intermediate structures expressed (alternative iodane-
or iodonium-like) on the reaction pathway to isomerization may 
be a valid alternative to predict the stability of these compounds. 
In particular, we wish to correctly identify reagents expressing 
an iodonium-like intermediate as these may also show enhanced 
reactivity for the transfer of the electrophilic substituent to a nu-
cleophile. This is a computationally much less demanding, but 
hopefully still useful approach. Knowing the correct answer in 
advance for the entire array of compounds studied will obviously 
lead to finding new, promising derivatives. This study explores the 
capabilities of different machine learning tools using a chemical 
model that gives easier access to information also on unstable or 
yet unobserved compounds. 

2. Generating Data for the Description of the Reagent 
Stability and Reactivity 

In order to profile these two distinct isomerization reaction 
paths for an entire array of compounds, we performed potential 
energy surface scans varying their E-I-L angles (θ and φ in Fig. 2) 
in the in-and out-of-plane direction between zero and 120°. The 
energies of these structures were computed by single point calcu-
lation (no geometry relaxation) using density functional theory 
(BP86 functional[9,10]) with aug-cc-pVDZ[11,12] and aug-cc-pVDZ-
PP (iodine)[13] basis sets. 

From Figs 3 and 4, we see that for the in-plane conversion 
the barrier for the neutral species (marked red) is generally lower, 
whereas for the protonated species (blue) the out-of-plane distortion 
results in lower-energy profiles. For Togni’s reagent, this difference 
is quite dramatic (compare energy-profile marked in cyan in these 
two figures). The availability of a lower energy out-of-plane path-
way is a strong indication that the protonated reagent may transfer 
its CF

3
 group along this path (for isomerization or in the reaction 

with a nucleophile). For the transfer of the CF
3
 group for the neutral 

form of Togni’s reagent, no such conclusion can be drawn on the 
basis of these crude (unrelaxed) potential energy surface scans. 

In order to investigate this further, we determined the energy of 
the intermediate structures along these two coordinates by means 
of full geometry relaxation for a subset of 382 of the 628 com-
pounds scanned (Figs 3 and 4). Each of the 382 scaffolds can be 

curs either in-plane, or, alternatively, above the molecular plane. 
In the first case, an alternative hypervalent structure is expressed, 
with a 3-center bond that involves the carbon atom of the phenyl 
ring (denoted E-I-C, or alternative hypervalent bond; structure c 
in Fig. 1). In the out-of-plane case, so far observed for protonated 
species only, we find an iodonium-like structure (structure d in 
Fig. 1), where the E-I-L angle is close to 90 degrees, the I-L bond 
becomes very long, and the iodine atom usually carries a signifi-
cantly enhanced positive charge. Typically, the alternative E-I-C 
iodane and iodonium-like structures are minima on the potential 
energy surface and can be considered as intermediates on these 
two isomerization reaction pathways. However, there also were 
bi-and even tri-molecular transition states found for the isomeri-
zation reaction.[7]

As part of this study,[7] we explored the relative stability of the 
two isomers for 628 different reagents; for 121 of these, we were 
able to find the transition state geometry and to determine the 
barrier to isomerization. This allowed us to classify this subset of 
reagents according to their thermodynamic and kinetic stabilities. 
The array of compounds explored contained twenty different elec-
trophilic substituents E, six different ligands L, plus modifications 
of the benziodoxole scaffold (see Fig. 3 in ref. [7]). 

Still, the list of unstable compounds found, i.e. thermodynami-
cally unstable compounds with a small barrier towards isomeriza-
tion, was too short to train a support vector machine for the predic-
tion of the stability of these reagents. Another, computationally 
less demanding approach to relate structure with stability – and 
possibly reactivity – needs to be found. 

We therefore shifted our attention to the early stage of the 
isomerization reaction. The type of intermediate structure taken 
before reaching the transition state is indicative of the isomeriza-
tion pathway taken. The availability of an iodonium-like interme-
diate, if low in energy, might indicate high mobility of the elec-
trophilic substituent in the out-of-plane direction (and vice versa). 
The mobility of the electrophilic substituent may not only relate 
to the stability of the reagent, but also be decisive for its reactivity 
with an incoming nucleophile (‘nucleophilic attack’). As a matter 
of fact, earlier ab initio molecular dynamics studies[8] showed that 

(a)

(d)(c)

(b)

Fig. 1. (a) Hypervalent iodine iodane form of Togni’s reagent express-
ing an E-I-L 3-center bond (equilibrium structure). (b) Open (acyclic) 
non-hypervalent isomer. This form is not active as a reagent for 
trifluoromethylation. (c) Alternative iodane structure expressing an E-I-C 
3-center bond; an intermediate on the in-plane isomerization path. (d) 
Iodonium form of protonated Togni’s reagent, an intermediate on the 
out-of-plane isomerization path. The reagent comes in two forms, one 
with a dimethyl-substituted carbon in the 5-membered-ring heterocycle 
as shown here (Togni I, ‘alcohol reagent’), and one with a keto group in-
stead (Togni II; ‘acid reagent’). 

(a) (b)
Fig. 2. Scanning the in-plane and out-of-plane isomerization reaction 
paths from the equilibrium structure towards the alternative iodane and 
the iodonium intermediate structures (c and d in Fig. 1). 
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express both intermediate structures. In general, the iodonium-type 
intermediates are lower in energy than their iodane-type counter-
parts (6 versus 3kcal/mol on average). In some cases, we observe 
that the iodonium-type intermediate is lower in energy than the io-
dane reagent, i.e. the reagent is thermodynamically unstable relative 
to the out-of-plane intermediate. We have no information about the 
transition state between the reagent and the intermediate, but we 
expect the barrier to be much smaller than the one of the isomeriza-
tion to an non-hypervalent form or of the nucleophilic attack. 

To make sure that the iodonium-form of the reagent can serve 
as a starting point for the reaction of the reagent with an incoming 
nucleophile (such as acetonitrile), we tried to find the correspond-
ing transition state. The transition state found (see Fig. 5) has a very 
similar and even somewhat lower energy as the in-plane transition 
state for the same reaction. These two barriers are also much lower 
in energy than the one computed for the transfer of the CF

3
 group 

labelled according to the intermediate structures they express, i.e. 
E-I-C iodane or iodonium-like. The computations were performed 
with Gaussian[14] and a special version of TURBOMOLE[15] gen-
erating output in eXtensible Markup Language (XML) for import 
into a database.[16]

The output includes energy and geometry information, charg-
es and multipoles as well as data items from the natural bond 
orbital (NBO) analysis,[17] in particular hypervalent contributions 
and shared electron numbers (‘overlap populations’) in the 3-cen-
ter bond. 

We found that all neutral (218), plus several protonated reagents 
(56), express an alternative hypervalent iodane form with a E-I-C 
3-center bond as shown in Fig. 1(c). The majority of the protonated 
reagents (111), however, adopt an iodonium-like form as shown in 
Fig. 1(d). We did not find any neutral reagent that would express an 
iodonium-like intermediate, i.e. this intermediate is expressed by 
protonated species only. Also, we did not find any compounds that 

Fig. 3. The energy profiles for an array of 264 neutral as well as 252 
protonated Togni-type reagents computed along the in-plane distortion 
path (angle θ as shown in Fig. 2). The energies were computed for an-
gles θ for values of zero to 120° (scans in steps of 10° without relaxation 
of the distorted structures). The energies computed for Togni’s reagent 
in its neutral and its protonated form are marked magenta and cyan, re-
spectively. Their intermediate structures are located near 110° and 100°, 
respectively 

Fig. 4. The out-of-plane energy profiles computed for the same array of 
compounds in the same way as specified in Fig. 3. For the protonated 
form of Togni’s reagent, a local minimum near an angle φ = 100°, corre-
sponding to an iodonium-like structure, is visible. 

Fig. 5. Transition state geometry (two different views) for the out-of-plane 
CF3 group transfer between Togni’s reagent in its protonated form and an 
acetonitrile molecule leading to the formation of an acetonitrilium ion. 

+

Fig. 6. Energy profile for the out-of-plane transfer of the CF3 group to 
acetonitrile using Togni’s reagent (protonated form; for the neutral re-
agent this path is not accessible). The step from the non-interacting 
reactants in their equilibrium form to the iodoinum-like intermediate and 
the acetonitrile, requiring a heat of formation of about 6 kcal/mol, is not 
shown here. 
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samples are split three to one (training versus test set). The (aver-
age) accuracy attained by this procedure was about 96%. 

The two most important descriptors found by the random for-
est method through this procedure are the hypervalent contribution 
of the iodine atom and the shared electron number between the 
iodine atom and (the representative atom of) the leaving-group L, 
which were both obtained from the natural bond orbital analysis. 
In fact, the two features appear to be closely related, and therefore, 
to avoid overfitting, we decided to use, next to the shared electron 
number between I and L, the overlap populations between I and 
E, as well as the shared charge over the three centers I, E, and L 
(denoted s(I-L), s(I-E) and s(E-I-L), respectively). 

Although we used slightly different and therefore potentially 
suboptimal features, the random forest method still shows an ac-
curacy of more than 92% with four-fold cross-validation, and, as 
shown in Table 3, 100% accuracy in the resubstitution evaluation, 
i.e. when resubmitting the training set as a test set. 

Using these three features, we also applied a simple deci-
sion tree method as provided by the rpart package[21] in R, and 
then obtained the results shown in Fig. 7 and 8, which depend 
on the user-defined parameter determining their complexity, i.e. 
the height of the output tree. The result shows that none of the 
output decision trees took s(E-I-L) as a descriptor, which implies 
that compared to s(I-L) and s(I-E) this particular descriptor is not 
important for the categorization. Even a simple decision tree as 

using the neutral reagent. The energy profile for the reaction start-
ing from the iodonium-type form of the reagent is shown in Fig. 6. 

The next step will be to find what properties determine the 
preference for one of the two intermediate structures from the 
data collected on the respective local minima, and to use these 
for the categorization of the reagents in view of their preferred 
intermediate structure. 

3. Finding Descriptors and Reagent Categorization 
We first applied the random forest method provided by the 

identically named package[18] in R[19] to find descriptors for the 
preferences of the 382 compounds in view of their intermediate 
structure taken. The random forest method, which is a classification 
method, constructs a number of decision trees based on random 
sampling of the training data combined with random selection of 
descriptors. A decision tree is an expression of judgment based 
on if-else decisions as shown in Fig. 7 and 8. The classification 
obtained by the random forest method is essentially a majority 
vote based on the decision trees it constructed. By preparing a 
many-fold of decision trees at random, the trees obtained by ap-
plying this approach are known to be robust against irregular data. 

Our input contains about fifty numeric data items (‘properties’) 
per compound, each of which has its own unit. Hence, it is not 
trivial to interpret, for example, a sum of those numeric data; how-
ever, judgements in a decision tree are individual to each feature. 
Given the diversity of potential descriptors provided through the 
input data, we decided to apply the random forest method to find 
the most important features and to then use these same descriptors 
with other tools for comparison of the respective categorizations. 

Taking the data from our array of 382 compounds as input, 
using the caret package[20] in R, a program that allows to setup an 
environment for various machine learning models, we evaluated 
the results of ten independent classification runs, each based on 
four-fold cross-validation, i.e. based on randomly partitioning the 
original sample into four equally sized sub-samples, one of which 
is retained as test set in each of the four validation rounds. The 

Iodane

Iodane lodonium

A

B C

Fig. 7. Evaluation of a simple decision tree for the classification of the 
array of reagents in view of their predicted intermediate structure (E-I-C 
iodane versus iodonium-like form). The top node contains 382 com-
pounds, 272 of which are known to take an iodane structure, whereas 
the remaining 110 compounds will prefer the iodonium form. The test of 
the array against the s(I-L) population results in a categorization saying 
that 288 reagents will prefer an iodane, whereas 94 reagents will prefer 
an iodonim intermediate structure. Comparison to the known correct 
result, i.e. 266 (out of 288) iodane and 88 (out of 94) iodoinum-like struc-
tures, shows that the overall correctness of prediction of this simple 
decision tree is 92.7%. 

Iodane

Iodane lodonium lodonium

Iodane

Iodane

Iodane

Iodane Iodane

A

B

C

D

E F G H I

Fig. 8. Using all descriptors, i.e. s(I-E), s(I-L) and s(E-I-L), respectively, 
leads to an improved prediction of the iodonium intermediate structures. 
After the first test, which is the same as in the simple decision tree, the 
population in node B is tested against a higher threshold for s(I-L), which 
leads to a perfect categorization within this subset of the array: all of the 
218 compounds that passed the two tests will indeed prefer an iodane 
intermediate structure. Most of the reagents preferring an iodonium-like 
intermediate structure are found in nodes H and I. In node H there are 
10 compounds for which the descriptors take values of 0.26 ≤ s(I-L) < 
0.31 and s(I-E) ≥ 0.53. But only 6 of these compounds will actually take 
an iodonium-like form as their intermediate structure. Together with the 
iodane-expressing structures in node I, a total 94 assignments are cor-
rect, a slight improvement over the small decision tree (85.5 as opposed 
to 80.0% of iodonium-expressing reagents predicted correctly) Overall, 
the complex decision tree shows a correctness of 93.2% (as opposed to 
92.7% for the simple decision tree. 
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shown in Fig. 7 achieves an accuracy of (266 + 88)/382 = 92.7% 
(resubstitution evaluation), which means that the shared electron 
number between an iodine atom and the leaving-group mainly 
determines the preference; namely, if a hypervalent iodine com-
pound has s(I-L) ≥ 0.26, it takes (with high probability) an E-I-C 
iodane form as its intermediate structure; otherwise it is likely to 
take an iodonium-like form. 

The multilayer decision tree shown in Fig. 8 also makes use 
of the s(I-E) feature, leading to a slightly improved prediction 
of iodonium structures: Now 94 out of 110 structures are cor-
rectly predicted (See confusion matrix in Table 2). Still there are 
16 cases that are falsely predicted as iodane-structure preferring 
(boxes F and G in Fig. 8 or Table 2). On the iodane side, we now 
have 262 correct and 10 false assignments. From a chemical per-
spective, finding iodonium-structure-expressing reagents may be 
more rewarding, thus making the multilayer decision tree more 
attractive to use. Both Tables 1 and 2 show the confusion matrices 
for the resubstitution evaluation.

Fig. 9 shows a scatter plot of our data whose x-and y-axes are 
the shared electron number between I and E and between I and 
L, respectively. One can see that these two features show a weak 
correlation. In this case, the decision tree method might be inap-
propriate for the classification, because every border given by the 
decision tree method is perpendicular to some axis. Therefore, we 
simply used the linear support vector machine provided by the 
kernlab package[22] in R with the two features shown in Fig. 9. 
For the training, the C-parameter set to one, i.e. no bias on the 
penalties for misclassifying training data. (Here we also do not 
need to take care of their units.) This linear support vector ma-
chine, trained using a set of 191 compounds (130 iodane- and 
61 iodonium-preferring cases), yielded the green categorization-
borderline displayed in Fig. 9. The best predictability (93%) using 
an SVM was achieved with four-fold cross-validation using the 
complete training set of 382 compounds. Hence the performance 

Table 1. The confusion matrix for the prediction by the simple decision tree in Fig. 7 

Predicted class
iodonium E-I-C iodane

Actual class
iodonium 88 22

E-I-C iodane 6 266

Table 3. The confusion matrix for the prediction by the random forest method upon resubmission  
(i.e. using the training set as a test set) 

Predicted class
iodonium E-I-C iodane

Actual class
iodonium 110 0

E-I-C iodane 0 272

Table 2. The confusion matrix for the prediction by the multilayer decision tree in Fig. 8 

Predicted class
iodonium E-I-C iodane

Actual class
iodonium 94 16

E-I-C iodane 10 262

Table 4. The confusion matrix for the prediction by the support vector machine 

Predicted class
iodonium E-I-C iodane

Actual class
iodonium 96 14

E-I-C iodane 14 258
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Fig. 9. The borderline (marked green) between reagents predicted to 
prefer either an iodane- or an iodonium-like structure as intermediates. 
The borderline is obtained from a linear support vector machine. Open 
symbols (squares and triangles) represent data items used for training; 
filled symbols represent members of the test set. The blue and red sym-
bols point at compounds that are known to take iodane and iodonium-
like forms, respectively. The axes denote the two descriptors s(I-E) and 
s(I-L) in units of number of electrons. On the right-hand-side, below the 
borderline, we see some of the few examples of failed categorization: 
The three blue squares represent cases we find in node H of Fig. 8,  
i.e. a node with only 60% accuracy. 
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s(I-L) >0.36 electrons (box E in Fig. 8). Still, the prediction of 
iodonium-preferring structures using these two features is slightly 
more difficult (less than 90% accurate). 

For the categorization of reagents showing a shared electron 
number between 0.26 and 0.36, s(I-E), the number of electrons 
shared between the iodine atom and the electrophilic substituent 
serves as an additional, secondary feature used in a more complex 
decision tree method: A high value of s(I-E) (greater than 0.53 
electrons) increases the likelihood that the compound will express 
an iodonium-like intermediate. 

With these descriptors and the two different decision tree 
methods we were able to categorize our array of 382 compounds 
with an overall accuracy of more than 93%. For the prediction of 
iodane and iodonium intermediate structures we observe a predic-
tion correctness of 96.3 and 85.5%, respectively. 

With an SVM trained with a set of 191 compounds using 
these two descriptors, we achieved a categorization (see Fig. 9) 
of very similar quality as the one obtained based on the decision 
tree methods. From the output of the SVM, we can backtrack 
and find those (protonated) compounds predicted to express 
an iodonium intermediate. These are expected to be among the 
most reactive, most likely more reactive (and less stable) than 
those protonated compounds that express and alternative iodane 
structure. 

The relationship between the shared electron number and the 
bond strength in hypervalent compounds is not a new discovery, 
but has been reported already in the 1980s.[25] Here, the novel 
aspect is that it was the machine – not humans – that selected 
the shared electron number as descriptor out of a manifold of 
molecular properties. 

We will apply these methods towards the categorization of 
other Togni-like reagents, i.e. reagents where we have no advance 
knowledge of their reactivity and preferred intermediate struc-
ture. Some of these may be very efficient reagents, certainly when 
Bronsted activated, and may deserve to be explored experimen-
tally. In this same context, we will need to further validate the 
correlation between the trend of reagents expressing iodonium-
like intermediate structure and their enhanced reactivity with nu-
cleophiles. 

The model introduced here allowed to bypass the difficulties 
encountered with the missing data on unstable compounds needed 
for training. A similar lack of negative information is observed 
with the data sets for chemical reactions  (see article of  Nair et 
al.[26] in this issue of CHIMIA). To close this gap, the community 
will need to establish a mechanism for the publication and collec-
tion of negative information. 

of the support vector machine method is almost the same as that 
of the random forest and decision tree methods. The confusion 
matrices are shown in Table 4. 

It also shows that all the species preferring an iodonium-type 
intermediate are protonated compounds. The neutral compounds 
falling underneath the green line in Fig. 9 are cases of failed cat-
egorization. It is interesting to note that the non-protonated Togni 
reagents I and II, both reactive also in their neutral form, are posi-
tioned near the border, whereas the protonated species clearly fall 
into the iodonium-like intermediate category. 

In fact, although unprotonated Togni reagents I and II take 
an E-I-C iodane form as intermediate structures, closer inspec-
tion of the isomerization path reveals that the CF

3
 group goes 

outside the molecular plane to then fall back to the molecular 
plane to form the intermediate structure. Apparently, the CF

3
 

group enjoys substantial mobility also in the out-of-plane di-
rection. 

Exploring the area of strong preference of iodonium-like in-
termediates in the output of the SVM (bottom and bottom-right in 
Fig. 10), we find, next to the two (protonated) Togni compounds, 
species with the same scaffold, but carrying cyano (CN), alkynyl 
(CCH) and azide (N

3
) E-groups. The substituent to the phenyl 

group (only NO
2
 was present in the array of compounds) appears 

to play a very minor role only. For all of these compounds, we ob-
serve that the energy of iodonium intermediate is distinctly lower 
than the energy of the alternative iodane intermediate. This is true 
also for protonated compounds expressing an alternative iodane 
(rather than an iodonium) intermediate. In some cases, mostly 
observed in the presence of NH and PH as second ligand, the 
iodonium intermediate is lower in energy than the reagent in its 
iodane equilibrium structure. 

The availability of a low-energy intermediate may be benefi-
cial for the reactivity of the compound. Unfortunately, we were 
not able to find a strong correlation between s(I-E), s(I-L) (or any 
other feature) and the energy of the intermediate for the proton-
ated compounds. Still, the most reactive species are expected to be 
those Bronsted-activated compounds that express an iodonium-
type intermediate. 

Another descriptor for the same categorization can be derived 
from natural localized molecular orbital (NLMO[23]) analysis of 
the 3-center bond. Based on the analysis of the contribution of 
the iodine atom to the bond for 186 reagents, we found that the 
percentage of s-orbital character in the NLMO composing the 
bond between I and E has to be greater than 2.7% for the com-
pound to express an iodonium-like form. Greater s-orbital con-
tribution means less p-orbital involvement in this bond, which 
allows the electrophilic group to rotate around the iodine atom 
more easily, thus enjoying greater mobility. 

Knowing that electronic structure features render good de-
scriptors for the structure and reactivity of iodanes invites to con-
sider quantities derived from the Domain Averaged Fermi-Hole 
analysis used to show the presence (and non-presence) of 3-center 
bonds in these compounds.[24] However, the analysis is computa-
tionally demanding and difficult to automate as manual interven-
tions are frequently required. 

4. Outlook and Discussion 
Using a machine learning approach (random forest method), 

we found that the shared electron number between I and L (s(I-
L)) is the key feature that determines whether in the isomerization 
reaction the reagent will take an E-I-C iodane or an iodonium-like 
form as its intermediate structure (boxes B and C in Fig. 7). The 
smaller the number of electrons shared between I and L, the more 
easily the bond is broken and eventually an iodonium-like form 
will be expressed: The decision tree method indicates that most 
of these reagents show an s(I-L) of 0.26 electrons or less; there is 
no single reagent expressing an iodonium-like intermediate with 
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Fig. 10. A close-up of the area containing those reagents, including the 
two forms of the protonated Togni reagent, the SVM predicts to be most 
reactive. The tags h-E-L-X-Y used to label the compounds stand for 
protonated (h; all compounds), electrophilic substituent (E; CF3, SCF , 
N , CN, and CCH), leaving group or second ligand (L; all oxygen), group 
adjacent to L (X; CO, C(CH3)2) in the five-membered heterocycle, and 
substituent to the phenyl group (Y; H, NO2). 
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