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Abstract: In this account, we demonstrate how statistical learning approaches can be leveraged across a range 
of different quantum chemical areas to transform the scaling, nature, and complexity of the problems that we are 
tackling. Selected examples illustrate the power brought by kernel-based approaches in the large-scale screen-
ing of homogeneous catalysis, the prediction of fundamental quantum chemical properties and the free-energy 
landscapes of flexible organic molecules. While certainly non-exhaustive, these examples provide an intriguing 
glimpse into our own research efforts.
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1. Introduction
The holy grail of computational/theoretical chemistry is de-

livering methods that provide fundamental breakthroughs prior 
to experiment.[1] Given this consideration, our work is oriented 
towards developing quantum chemical methods and concep-
tual tools aimed at discovering or predicting new catalysts and 
molecular electronic materials. Excitingly, the field of quantum 
chemistry is currently experiencing various paradigm shifts (e.g. 
machine learning along with big data analysis, GPU accelerated 
software) while potentially awaiting others (e.g., quantum chem-
istry on quantum computers). Machine learning (ML) methods 
are flourishing tremendously in quantum chemistry simulations, 
inferring predictive models for ground-state molecular proper-
ties,[2] potential energy surfaces,[3] molecular forces,[4] infrared 
spectra,[5] electron densities,[6] density functionals,[7] and response 
properties like polarizabilities.[8] They promote the routine use 
of highly-accurate quantum chemical methods[2a] and accelerate 
the exploration of vast chemical spaces for myriad applications, 
including the discovery of new potential catalysts,[9] the determi-
nation of molecular conformers or polymorphs stability,[10] and 
the design of novel synthetic pathways.[11]

With a few exceptions[2,4,7] the enormous potential of appli-
cations of machine learning models has been relatively slow to 
impact the field of quantum chemistry. We perceive three main 
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research providing pertinent examples.[13] Computations not only 
lead to an enhanced understanding of existing reaction systems, 
but are also used to establish general concepts for the design of 
new catalysts. Ideally, the discovery of new catalytic reactions 
should benefit from the latest advances in quantum chemistry and 
also from machine learning models. Large-scale data analyses and 
databases resulting from quantum chemistry/ML combinations 
uncover information and relationships that are likely to be missed 
with commonly used small screening procedures. One of our re-
search lines consists in developing frameworks that enable these 
ML-based large-scale screenings in order to assist in the design 
of molecular catalysts. 

Until recently, applications of machine learning to homoge-
neous catalysis remained exceedingly rare.[15] Examples include 
the predictions of outcomes for C–N coupling reactions and de-
oxyfluorinations reaction with random forest models,[16] as well 
as predictive modeling for the chiral phosphoric acid-catalyzed 
thiol addition to N-acylimines exploiting deep feed-forward neu-
ral networks.[17] Other interesting contributions by Kulik et al. use 
deep neural networks and kernel ridge regression for predicting 
quantum mechanical properties (e.g. spin-state splittings, their 
sensitivity to HF exchange, spin-state specific bond lengths),[18] 
metal-oxo formation energies,[19] and electronic structure calcula-
tion outcomes.[20] Our recent collaboration with the von Lilienfeld 
group[9a] also constitutes a pioneering computational illustration 
merging these two fields (i.e. homogeneous catalysis and machine 
learning). 

Our basic premise was to establish a broadly applicable toolkit 
based on the Sabatier principle,[21] which can be easily combined 
with machine learning models in order to enable large-scale 
screening (~104 catalysts) virtually instantaneously. Our funda-
mental toolkit exploits volcano plots, which are traditionally used 
in fields of heterogeneous catalysis and electrochemistry for iden-
tifying highly active catalysts.[22,23] These plots pictorially repre-
sent the aforementioned Sabatier’s principle,[21] which states that 
the interaction between a catalyst and a substrate should be neither 
too weak nor too strong. They rely upon an easily determined 
(experimentally or computationally) descriptor variable (such as 
the binding energy between a substrate and a catalyst, x-axis of the 
volcano plot in Fig. 1) to ascertain a property of interest (overpo-
tential,[24] turnover frequency,[25] etc.) related to the performance 
of different catalysts. The underlying mathematical correlations 
used to create volcano plots are linear free energy scaling relation-
ships,[26] which arise owing to the dependence of the free energies of 

reasons for this delay: First is the inevitable byproduct of a com-
munity clash between machine learning experts and chemists. The 
first category of scientists lacks adequate knowledge of the key 
societal and fundamental chemical problems and do not commu-
nicate easily with chemists. Chemists, on the other hand, were 
not always conscious of the latest data-related technology and do 
not necessarily understand and appreciate what actually entails a 
machine learning model and in what precise context one might 
use it. These cross-community limitations can be successfully 
overcome through national or international synergic networks re-
uniting diverse scientific communities. A second reason for the 
delayed impact of ML-quantum chemistry relates to the reality 
that many quantum chemists adopt the mindset that new methods 
must be developed based on fundamental physics. In other words, 
they naturally disregard (or view with a high degree of skepticism) 
models developed based on statistics or data-driven approaches. 
Finally, chemists (both theorists and experimentalists) are used 
to dealing with a fairly small number of data points (<100) and 
measurements, which are not readily compatible with ML training 
procedures. 

Below, we outline our recent efforts in bridging fundamental 
quantum chemistry with machine learning techniques. In particu-
lar, we illustrate how supervised learning techniques have trans-
formed the scale, complexity, and the nature of the problems tack-
led.[1,12–14] We begin by discussing how machine learning models 
can be exploited to move from small- to large-scale screening of 
homogeneous catalysts. Our second ML effort demonstrates how 
fundamental, albeit complex, quantum chemical properties can 
be obtained at a negligible cost. In the third section, we share our 
thoughts on future challenges for computational organic chemis-
try and elaborate on the benefits of using machine learning models 
to achieve both converged statistical sampling and accurate quan-
tum chemistry. The reader should note that this account should 
not be considered as an exhaustive review of machine learning in 
quantum chemistry, but rather as a highlight of our recent efforts 
aimed at integrating the latest developments into our research over 
a range of diverse applications.

2. Scaling Up
The search for catalysts with enhanced performance charac-

teristics remains a backbone of modern chemical research. Once a 
problem tackled solely in the synthetic lab, today modern compu-
tational power coupled with advances in quantum chemistry have 
opened the field of catalysis to computational analysis with our 

Fig. 1. Catalyst library and schematic representation of the supervised learning strategy for the prediction of 25,116 descriptor variables. 
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up to complex functions and fields such as potential energy sur-
faces,[3] electron densities[6] and many-body wavefunctions.[30]

While both the increase in computing power and the improve-
ment of quantum chemical algorithms contributed in accelerat-
ing the acquisition of quantum chemical data necessary to train 
the ML models, it is the sophistication of local machine learning 
representations and the development of kernels encoding sym-
metry conservation laws[28] that enabled the statistical learning of 
increasingly complex quantum chemical objects. Accessing the 
electron density [ρ(r)] or the many-body wavefunction at a negli-
gible cost is especially appealing given that all the other molecular 
properties could be derived from them. 

ρ(r) is traditionally obtained from ab initio computations, but 
these may become rapidly demanding when targeting thousands 
of molecules/conformations or very large chemical systems. In 
addition to established methodologies, such as linear-scaling 
methods[31] and multipolar fittings of experimental data,[32] ma-
chine-learning models are developed to beat the computational 
cost of ab initio approaches by delivering the electron density 
solely from the nuclear coordinates. Yet, predicting the amplitude 
of a function at every point in space in a transferable manner is a 
non-trivial task.

For this purpose, together with Ceriotti and collaborators, we 
elaborated scalable and transferable machine-learning models of 
the electron density, based on an atom-centered, local representa-
tion of the density field in terms of Gaussian basis function.[6b,d] 
This framework relies on symmetry-adapted Gaussian process 
regression (SA-GPR), where the complex features and symme-
tries of the density field are represented by a hierarchy of kernels 
based on spherical tensors of increasing order (λ-SOAP).[8b] The 
predictive power of this technique has been tested both on a con-
formationally diverse ensemble of increasingly complex hydro-
carbons extracted from molecular dynamics simulation and on 
a chemically diverse ensemble of amino acid side-chain dimers 
taken from the Sherrill’s BioFragment Database (BFDb).[33] From 
a chemical perspective, the appeal of ML-predicted fundamental 
quantum chemical quantities are best illustrated by all the acces-
sible qualitative insights provided by, for instance, topological 
descriptors (e.g., density overlap region indicator DORI[34]), the 
electrostatic potential (ESP) (see Fig. 3), as well as binding en-
ergies readily estimated from the ESP, etc. The framework based 
on atom-centered contributions allows the linear-scaling transfer 
of the predicted densities from small molecules to more complex 
chemical systems, as long as the training set contains sufficient 
chemical diversity. The impressive transferability is best exempli-
fied by the excellent charge density ML-prediction of pentapep-
tides using a SA-GPR model, trained exclusively on amino acid 
side-chain dimers. (Fig. 3).

the various catalytic cycle intermediate species on one another.[27] 

Owing to the power of these scaling relationships, by knowing the 
value of a single descriptor variable it is possible to know the free 
energies associated with moving between any two intermediates 
of the catalytic cycle. In 2015, we transferred the concept, for 
the first time, into the realm of homogeneous catalysis[13a] and 
have since proposed further refinements covering many specific 
aspects of homogeneously catalyzed reactions (e.g., regioselec-
tivity, kinetics, classes of reactions, multidimensional reaction 
parameters).[13b–f] Using the Suzuki-Miyaura cross-coupling as 
a prototypical reaction, we originally reproduced experimental 
known trends for the behavior of different metal–ligand combina-
tions.[13a] The use of these plots in tandem with machine learning 
models based on kernel ridge regression and different molecular 
representations (i.e., molecular vectorial representation which 
encodes the compositional and structural information of a mole-
cule suitable for a kernel function that measures their similarities 
and relationships) (Fig. 1) allowed us to dramatically increase the 
scale of the catalyst screening (~104)[9b] and to perform big-data 
type analysis, which uncovered hidden chemical patterns (Fig. 
2).[9c] Using the machine learning strategy, we were able to identi-
fy promising Suzuki-Miyaura catalysts with a cost lower than $10 
(USD) per mmol as well as catalysts suitable for the entire class 
of existing C–C cross-coupling reactions (i.e., Kumada, Negishi, 
Stille, Hiyama, etc.).[9b,13d] To facilitate the exploration of the cat-
alyst landscapes, we created interactive maps that are freely avail-
able to interested readers on the material cloud.[9c]

We are now prioritizing the use of similar workflows for chal-
lenging reactions of societal relevance (e.g., hydrogenation of CO

2
,
 

aryl ether cleavage) as well as the elaboration of broadly applica-
ble ML frameworks compatible with the more complex situations 
inherent to organocatalysis (less rigid structures) and to the diver-
sity of descriptors useful to cast the catalytic cycles. Meeting this 
objective will require the elaboration of novel, more transferable 
local (i.e., atom-based) representations that allow the reproduc-
tion of potentially complex descriptors, models that maximize the 
diversity of the training set for reducing the number of required 
instances and the overall cost of the predictive models. As advocat-
ed by Ceriotti,[28] these future transferable ML protocols will most 
likely be rooted in physically-motivated frameworks.

3. Reaching More Complexity 
Another source of inspiration for the quantum chemical ma-

chine learning community comes from the complexity of the 
electronic structure problem. Quantum chemists have tradition-
ally followed two conceptually diverging pathways to solve the 
Schrödinger equation and access molecular properties. The first, 
and by far the most common, is deterministic and consists in the 
development and use of a hierarchy of physically motivated ap-
proximations to the exact solution of the Schrödinger equation, 
either based on the many-body wavefunction (i.e., Hartree-Fock, 
post-Hartree-Fock methods) or the electron density (i.e., DFT). 
The second pathway is stochastic and is well represented by the 
collection of the quantum Monte Carlo techniques (e.g., VMC, 
DMC, FCI-QMC, etc.). In this context, machine learning tech-
niques are complementary to the two traditional approaches and 
represent a third, statistical route to access complex molecular 
properties. More specifically, this third paradigm of quantum 
chemistry relies upon the consideration that, given a sufficiently 
high number of observations, any molecular property of arbitrary 
complexity can be predicted with only a small degree of uncer-
tainty.

With the current boom of machine-learning applications in 
quantum chemistry, the complexity of molecular properties able 
to be predicted has evolved from simple scalar (e.g. atomization 
and isomerization energies[2]) to vector and tensorial quantities 
(e.g. forces,[4] multipole moments,[29] (hyper-)polarizabilities[8]) 

Fig. 2. Interactive map (DOI: 10.24435/materialscloud:2019.0007/v3) ob-
tained after an unsupervised learning procedure (i.e. dimensionality re-
duction algorithm) and used for the identification of C–C cross coupling 
catalysts with the best thermodynamic profiles.
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speeds up free energy computations at the target QM level by 
reusing canonical sampling generated under a different, cheaper, 
Hamiltonian (e.g., density functional tight binding DFTB).[38]

Fig. 5b illustrates the gain in time and accuracy for computing 
the ab initio free energy landscapes at 300 K of a prototypical 
system (thieno[2,3-b]thiophene, 40 atoms) possessing regions 
dominated by different extents of π-stacking interactions and 
variable fluxionality. The machine learning potentials, which 
use kernel ridge regression and the spectrum of London Axilrod-
Teller-Muto (SLATM) representation,[10b] are trained to predict 
domain-based local pair natural orbitals DLPNO-CCSD(T)[39]/
CBS or DFT energy quality. The 1500 most structurally different 
dispersion-corrected DFTB conformations out of a total of 43000 
were selected[40] and employed for training the ML model reach-
ing an accuracy of 0.6 kcal mol–1. The relatively small number of 
necessary training points makes it possible to reach the DLPNO-
CCSD(T)/CBS target.

The need for accurate quantum chemistry is demonstrated in 
Fig. 5 showing the rather poor performance of the DFTB semi- 
empirical potential, which flattens the entire profile reducing the 
relative energies of the three regions to basically zero. In contrast, 
DLPNO-CCSD(T)/CBS captures the significant, albeit subtle, 
differences between a deeper energy region well (Fig. 5c: dis-
articulated) and the entropy-driven open conformational region 
(Fig. 5c: open) dominated by soft vibrational modes and anhar-
monic effects. 

This is a clear quantum chemical example demonstrating 
how the increase in sophistication of the ML model transforms 
our way of accessing some of the most fundamental molecular 
properties. A step further in the evolution towards this complexi-
ty would consist of using similar transferable techniques to fully 
bypass the resolution of the Schrödinger equation and derive ro-
bust statistical relationship between the electron density and the 
exchange-correlation energies and, thus, to infer information for 
the design of improved density functional approximations.[6a]

4. Redefining our Quantum Chemical Objective 
Finally, in addition to accelerating the large-scale screening 

of materials and offering access to the complex electronic struc-
ture properties irrespective of the system size, machine learn-
ing techniques are increasingly exploited to achieve converged 
statistical sampling without sacrificing quantum chemical accu-
racy.[4,5,35] While combining ab initio potentials with enhanced 
sampling techniques has always been a target, the impracticality 
of obtaining both converged statistical sampling and accurate 
energetics (i.e., post-Hartree-Fock) has traditionally hampered 
the ability of improving the quantum chemical description of 
moderately sized, yet highly flexible molecules that evolve on 
complex potential energy surfaces. In fact, the most common-
ly employed approaches in computational organic chemistry[36] 
routinely ignore [or describe in a simplified (and borderline 
erroneous) manner] crucial phenomena such as conformation-
al complexity of the species and the subtle interplay between 
non-covalent interactions, full entropic contributions, and sol-
vent effects. In computational organic chemistry, a tremendous 
opportunity exists to change the nature of the computational 
problems tackled so far by marrying machine learning-based ac-
celerated sampling approaches while retaining the advantages of 
molecular quantum chemistry flagship codes. These approaches 
are especially suited to bring  higher levels of sophistication to 
the energetic description of rather flexible medium sized orga-
no- and photoswitchable catalysts rationally designed based on 
concepts such as steric hindrance, π-stacking, anion-π interac-
tions, hydrogen bonding etc. 

Our efforts in this direction[37] consist of combining ker-
nel-based approaches with global or local molecular representa-
tions (i.e. molecular or atom-based vectorial representation) to-
gether with enhanced sampling that use both Hamiltonian and 
reservoir replica exchange (Hres-RE). The so-called Modular 
Replica Exchange Simulator (MRES, see Fig. 4) dramatically 

Fig. 3. (top) Transferability: elec-
tron density of an amyloid forming 
peptide (PBD ID: 3OW9) predicted 
by training on small molecule di-
mers. Electron density is reported 
at three isovalues: 0.5, 0.1 and 
0.001 e– Bohr–3. (bottom left) DORI 
map of the peptide (isovalue: 0.9) 
colored by sgn(λ2)ρ(r) in the range 
from –0.02 a.u. (red: attractive 
interaction) to 0.02 a.u. (blue: re-
pulsive interaction). (bottom right) 
Electrostatic potential (ESP) in 
Hartree (a.u.) of the peptide com-
puted from the predicted density 
(isovalue: 0.05 e– Bohr–3). Further 
details in ref. [6d].

Fig. 4. Illustration of the sampling scheme designed to compute 
 accurate free energies with machine learning potentials using MRES.
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The same strategy can be used to predict the free-energy 
surfaces of chemical diverse systems such as amino acid (AA) 
dipeptides with the general structure ACE-AA-NME. The per-
formance of the ML potential is illustrated in Fig. 6 with the 
thorough exploration of the free energy landscape of a flexible 
lysine dipeptide. At 300 K, three different minima (in trans con-
formation) characterizing the secondary structure of the dipep-
tide are identified in the Ramachandran plot. The conformation-
al region A is nearly planar and stabilized by a hydrogen bond 
between one peptide bond and the carbonyl oxygen of another 
(see A in Fig. 6) forming a five-membered ring. The minima B 
and C are stabilized by hydrogen bonds that are characterized 
by two seven-membered rings of atoms where the side chain is 
either in the equatorial or in the axial position to this ring (see 

B and C in Fig. 6, respectively). Yet again, the comparisons be-
tween DFTB and a higher level (i.e., PBE-dDsC[41]) stress the 
necessity of improving upon the DFTB baseline to achieve accu-
rate free energy landscapes. DFTB tends to overstabilize the C7 
axial form (i.e., 0.8 kcal/mol for DFTB and 1.9 for DFTB+∆ML) 
(see region C) and understabilize the quasi planar C5 form (i.e., 
0.5 kcal/mol for DFTB and 0.1 for DFTB+∆ML) (see region A) 
of the lysine dipeptide. 

The low-cost ML-based ab initio free-energy landscapes ob-
tained for these dipeptides constitute a first step prior to building 
even more transferable ML-potentials capable of predicting the 
free-energy profile of any oligopeptides containing up to 10 or 20 
peptide bonds and, alternatively, to accelerate the crystal structure 
prediction of small oligopeptides. 

Fig. 5. a) Representation of dithiacyclophane and its collective variables: The distance between the cyclic moities and the angle between the planes 
that go through them. b) Total computational cost of generating the free energy landscapes with different potentials. The blue color represents time 
spent doing Temperature RE (T-RE) simulations, the orange color represents time spent doing the single point computations to train the ML models, 
and the green color represents time spent doing Hres-RE simulations using the results from a T-RE simulation with a cheaper potential. The cost of 
the free energy landscape generated with DLPNO-CCSD(T)/CBS is an estimation (DFTB-SK). c), d) and e) Free energy landscapes generated with 
the DFTB-SK, ML-DLPNO-CCSD(T)/CBS, ML-PBE0-D3BJ(6-31G).

Fig. 6. Representation of the three 
metastable minima of the lysine 
dipeptide (top) in the form ACE-
LYS-NME capped with an acetyl 
group (ACE) and an N-methyl 
amide group (NME). The two di-
hedral angles Ψ and θ are used as 
collectives variables. Comparison 
of the Free Energy Surface (FES) 
of the lysine dipeptide obtained 
from direct DFTB-D3BJ compu-
tations (bottom left-hand corner) 
and ML-corrected potential (bot-
tom right-hand corner) targeting 
the PBE-dDsC level.
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