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Abstract: A new hybridized algorithm that combines process optimisation with response surface mapping was 
developed and applied in an automated continuous flow reaction. Moreover, a photochemical cascade CSTR 
was developed and characterised by chemical actinometry, showing photon flux density of ten times greater 
than previously reported in batch. The success of the algorithm was then evaluated in the aerobic oxidation of 
sp3 C–H bonds using benzophenone as photosensitizer in the newly developed photo reactor.
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1. Introduction
Modern society’s expectations demand a new level of chemical 

development, which aligns with sustainability principles and the 
molecular complexity required across a range of end-use applica-
tions. The development of new technologies and methods have a 
critical role in achieving these needs, improving research output 
and enabling discovery and evolution of new and strategically im-
portant processes. Continuous flow methods have contributed to 
numerous improvements over batch alternatives, which include: 
precise reaction times, enhanced heat and mass transfer, access 
to an extended operating window, and the use of heterogeneous 
reagents and catalysts in packed-bed reactors.[1–7] 

Photons are often considered as green and traceless reagents 
to instigate chemical reactions, as they can replace chemical ac-
tivating agents, thereby reducing by-product formation and re-
ducing the downstream processing required. For these reasons, 
there has been a recent uptake in the use of microreactors for 
photochemistry, with the narrow channels providing a high sur-
face area to volume ratio. This results in a uniform distribution of 
light across the reactor, increasing selectivity and reducing reac-
tion times.[8] However, limitations still exist regarding the scale-
up of these systems. Although numbering-up has been previously 
demonstrated,[9] there remains operational challenges in the con-
text of highly regulated manufacturing. Therefore, continuous 
stirred tank reactors (CSTRs) remain one of the favoured choices 
of reactor for high productivity applications in the pharmaceuti-
cal industry.[10] One example application is the development of a 
100 mL laser-driven CSTR for a kilogram-scale photocatalysed 
C–N coupling reaction, where a high intensity laser (25 W) was 
utilized to increase the total amount of light absorbed, and thereby 
the productivity.[11] The recent developments in LED technology 
have reduced the entry barrier to using photochemical reactions 
and ignited a renewed interest in photochemical methods.[12,13] 
This has led to a new generation of photochemical reactors and 
methods.[8,12–16]

Continuous flow processes lend themselves to automation 
with the availability of in-line and on-line analytical techniques. 
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2.2 Chemical Actinometry
The photon flux density defines the amount of light absorbed 

per unit of volume per unit of time. The higher the photon flux 
density of a reactor, the faster a photochemical process will be 
complete. To calculate this, the incident light intensity (I

0
) must be 

determined. This was achieved via chemical actinometry, which 
uses a photoinduced reaction of a compound to measure the light 
intensity at a given wavelength. The photochemical isomerisa-
tion of o-nitrobenzaldehyde (NBA) to o-nitrosobenzoic acid at 
365  nm was investigated using an automated continuous flow 
reactor (Fig. 2). Notably, the quantum yield (φ) of the chemical 
actinometer must be known. In this case, the quantum yield of 
NBA was known to be 0.5 at 365 nm.[27]

The relationship between the rate of conversion of the actino-
metric compound and the Beer-Lambert law can be used to derive 
Eqn. (1) for the calculation of the incident light intensity. The 
experiments are conducted with high concentrations ([NBA] = 
0.1 M) of the actinometric compound and long path lengths (l = 
1 cm). This makes the right hand term of Eqn. (1) close to uni-
ty, and enables the negative differential term to be replaced by a 
zero-order rate constant. Therefore, Eqn. (1) can be simplified to 
Eqn. (2).[28,29]

𝐼𝐼 = −𝑑𝑑 𝑁𝑁𝑁𝑁𝐴𝐴𝑑𝑑𝑑𝑑
1
ɸ

1
1 − 10  (1)(1)

𝐼𝐼 =
𝑘𝑘
ɸ (2)(2)

The zero-order rate constant is equal to the slope of the 
time profile for the photochemical conversion of NBA (Fig. 3). 
However, significant curvature was observed as a result of light 
absorption by the o-nitrosobenzoic acid product. Therefore, a sec-
ond-order polynomial was fitted to the data and the initial slope 
of the curve determined by taking the derivative and evaluating at 
time = 0 min. The resultant zero-order rate constant (k

0
 = 1.67 µg 

µL–1 min–1) was used to calculate the incident light intensity (I
0
 = 

3.67 × 104 einstein L–1 s–1) according to Eqn. (2), which is equiva-
lent to the photon flux density (q

p
/V = 0.37 einstein m–3 s–1) of the 

reactor under operation at full absorption. The photon flux density 

To maximise efficiency these automated systems can be coupled 
with optimisation algorithms to close the feedback loop.[17,18] This 
allows for the opportunity to free the human resource associated 
with experimentation and significantly improve the productivi-
ty and efficiency of laboratory and process development.[17,19,20] 
With the drive from pharmaceutical industry to adopt a quality by 
design (QbD) approach[21] there is a requirement to understand 
the chemical reaction domain. Current techniques have focused 
on adopting a statistical or mechanistic approach to this problem 
through iterative screening and optimisation or postulating a ki-
netic model.[22] As these approaches can often require extensive 
data collection, there is a growing need for the development of 
intelligent algorithms. In this work, we present a hybrid algorithm 
which locates the optimum and efficiently maps the local response 
surface terrain. Notably, this is achieved in a significantly reduced 
number of experiments compared to successive DoEs which have 
been extensively used by industry for many years.

2. Results and Discussion

2.1 Miniature Photochemical Continuous Stirred Tank 
Reactor (CSTR) Cascade

We have previously reported a miniature CSTR cascade 
(known as FreactorTM)[23,24] for the laboratory-scale optimisation 
of multiphasic chemical reactions.[25] Active mixing provided by 
the CSTRs decouples flow rate and mixing performance, mak-
ing them suitable for mass transfer limited reactions with longer 
residence times (> 10 min). This also enables a low liquid hold-
up to be maintained, which is desirable for minimising material 
consumption during process development (e.g. self-optimisation). 
Taking this into consideration, we designed a photochemical min-
iature CSTR cascade for laboratory-scale process development 
(Fig. 1, where n is the number of CSTRs). Furthermore, the ag-
itation provided by a CSTR prevents the settling of particulates, 
thus reducing the risk of reactor fouling.[26] This is desirable for 
maintaining a constant reactor performance, as precipitation on 
the reactor walls reduces the amount of light absorbed. Due to the 
higher cost and safety concerns regarding the use of lasers, we 
opted for commercially available LEDs (365 nm, 3 W nominal 
power per CSTR) to provide a more widely accessible system. 
Mixing within the CSTR transports fluid vertically and thus into 
and out of the region close to the window where the flux density 
is greatest. This active mixing overcomes the issue of diminishing 
light intensity as a function of distance travelled through the reac-
tion medium and overcomes the diffusion controlled transport of 
reactants and products into and out of the photochemically active 
region.

Fig. 1. Photograph of the photochemical miniature CSTR cascade (n = 4) 
used in the setup for the optimisation of tetralin to tetralone (Fig. 6). 

Fig. 2. Schematic of the setup for automated chemical actinometry 
(n = 2). o-Nitrobenzaldehyde was used as a chemical actinometer with 
known quantum yield (φ365 = 0.5). The photochemical isomerisation of 
o‑nitrobenzaldehyde to o-nitrosobenzoic acid was monitored via HPLC 
analysis. SL = sample loop.
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primary goal of the methodology to understand a predefined re-
action space.[32]

Currently, there is little in the area of optimisation techniques 
coupled with response surface mapping when applied to self-opti-
mising chemical systems. As such, a hybrid algorithm considering 
these factors is proposed. Fig. 4 illustrates the conceptual goal 
of the algorithm, initially determining the process optimum (red 
point) and then iteratively understanding a user-defined region 
around the optimum (pink surface). The hybrid algorithm we have 
developed is separated into three stages: optimisation, screening 
and fine tuning the response surface. 

SNOBFIT[33] was selected as the initial optimisation algorithm 
for the hybrid approach. The algorithm is robust in the presence 
of noise and has inbuilt exploration of the experimental domain 
to provide confidence in the determined solution. The exploratory 
nature of the SNOBFIT algorithm has previously been utilised 
to fit an empirical polynomial model, with the empirical models 
showing excellent fit to the data.[19]

Following the initial global optimisation, the algorithm moves 
onto the screening stage, where a surrogate Gaussian process 
(GP) model is constructed. A GP model was selected ahead of 
a polynomial model due to the increased flexibility afforded and 
the improved capabilities of the GP model to handle noisy data. 
Fitting of the GP model was preformed using MATLAB’s inbuilt 
Gaussian process regression function ‘fitrgp’. This fits a Gaussian 
process model to the available data through minimising a cost 
function; the cost function balances how well the model fits to the 
data with its predictive power in relation to future data. Employing 
a Plackett-Burman screening design,[34] a screening process is un-
dertaken where the upper and lower bounds of the design are opti-
mised to explore the predefined target region. The target provided 
by the user directs the algorithm to mapping the space around the 
optimum up to a predefined region. Fig. 4 provides an example of 
this, with the algorithm aiming to map the region spanning 10% 
from the optimum yield. As this region is around the previously 
determined global optimum, a local search method (MATLAB’s 
‘fmincon’ function) was utilised to optimise the design.

The optimisation of the design leads to a set of candidate 
experiments where the chemical system is to be evaluated. This 
process continues until the screening portion of the algorithm 
achieves the target defined by the user at initialisation. 

The final stage of the algorithm performs a central composite 
face centred (CCF) design utilising the upper and lower bounds 
determined from the screening portion of the algorithm. This stage 
of the algorithm further refines the response surface model around 
the previously ascertained global optimum. The stages undertaken 
by the algorithm are highlighted in Fig. 5.

was found to be more than 10x greater than in previously reported 
batch systems,[30] indicating that the design offers a significant 
improvement in productivity whilst maintaining the advantages 
of CSTRs previously described. In addition, the quantum yield 
of processes, not influenced by mass transfer, can be determined 
using the characterised incident light intensity, which provides 
useful mechanistic insights.

2.3 Hybrid Algorithm
The coupling of algorithms can lead to enhanced capability 

and performance simply not accessible by using a single algo-
rithm. In regions where the response surface is expected to be 
smooth, local search heuristics can outperform their global coun-
terparts in the search for a defined target area. Given this, the 
implementation of hybrid algorithms could provide an interesting 
area of development for chemical reaction optimisation.

Determining the optimum for a process is essential to enable 
efficient process operation. However, it is important to understand 
the response surface around the optimum, given the dynamic na-
ture of chemical processes. Full knowledge of the response sur-
face around an optimum can inform the user of how changes in 
process inputs, either deliberate operator inputted changes or 
changes due to plant error such as pump flowrate or reactor tem-
perature drift, affect the response variable for the system. With 
single point optimisation, should no further response work be per-
formed, the user lacks full understanding of whether the optimum 
determined is near a performance ‘cliff edge’ or whether there is 
a larger unexplored region of process stability. Response surface 
work around the optimum allows the user to ascertain this knowl-
edge which can further inform the continued design process. This 
is a vital aspect when adopting a QbD approach, where the limits 
of operation around the processing conditions must be known to 
provide a rigorous plant-scale process. 

Previous work has focused predominantly on the determina-
tion of an optimum set of conditions in an efficient and robust 
manner.[31] Further understanding of the area around the optimum 
has not generally been considered as a requirement for optimisa-
tion algorithms. In systems where a full mechanistic understand-
ing is still yet to be obtained, it is vitally important to have this in-
formation, to ensure system inputs are kept within a desired range.

Recent work by Wyvratt et al. has looked at development of 
response surface models utilising dynamic experiments to max-
imise the efficiency of data collection in minimising material 
consumption. The authors were able to generate a polynomial 
model describing the response surface for a Knoevenagel con-
densation reaction. Post processing of the data to correct for 
the dynamic nature of the system was a requirement, with the 

Fig. 3. Time profile for the photochemical isomerisation of o-nitrobenzal-
dehyde (NBA) to o-nitrosobenzoic acid in continuous flow.

Fig. 4. Overview of algorithm search goal for a simulated reaction. 
Optimum is shown as a red dot with the goal region indicated as the 
purple surface.
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the SNOBFIT algorithm, with a subsequent surrogate GP model 
built from its results. A target tetralone yield reduction of 10% 
from the optimum value was selected prior to running the algo-
rithm. Product composition for the above scheme was determined 
by online HPLC, from which the data was used as feedback for 
the hybrid algorithm. The design space for the hybrid algorithm 
considered two variables: residence time and oxygen equivalents 
(Table 1).

The automated reactor setup was started in the morning and 
terminated the following evening, running overnight. The algo-
rithm automatically terminated when the final CCF had been 
completed with a total of 61 experiments performed divided as 
follows: 38 SNOBFIT experiments, 12 screening experiments and 
11 CCF experiments. A graphical summary of the results for the 
first two stages of the algorithm is provided in Fig. 7, with the final 
screening design summarised as a contour plot in Fig. 8.

A final response surface model for the entire process (colour 
mapped surface) can be generated utilising the experimental data 
(Fig. 9). The plot includes the 95% confidence interval (CI) for 
the entire search domain (contained within the pink surfaces). A 
global optimum of 65% tetralone yield was determined with a 
residence time of 18.3 minutes and 4.69 oxygen equivalents. This 
compares favourably against previously reported conditions:[6] 
(i) reduced residence time (18.3 cf. 45 minutes) provides a more 
productive process; (ii) air is a safer source of oxygen compared 
to pure oxygen; (iii) benzophenone is a more accessible and at-
om economical photosensitiser compared to TBADT, even when 
used at 0.5 equivalents. These benefits can be in part associated 
with the rapid mixing provided by the CSTRs, which helps to 
overcome mass transfer limitations associated with gas-liquid 
segmented flow observed in mesoscale tubular reactors. As a co-
variance function with automatic relevance determination (ARD) 
was used, examination of the relevant importance of a variable can 
be carried out a posteriori (Table 2).

The strong dependence on oxygen equivalents shown by the 
hyperparameters of the model is clearly indicated in the data and 
the contour plot (Fig. 7 and Fig. 8). This, coupled with the full 
model (Fig. 9) provides both qualitative and quantitative results 
that can be used to inform the design of a chemical process. The 
accompaniment of a 95% CI can additionally guide this process 
by offering the expected range of values, imperative in chemical 
process design. In data dense regions the 95% CI can be seen to 
be narrower indicating a greater model confidence in the mean 
value for these regions. Both the traces and the surface model in-
dicate the possibility of over oxidation of tetralone, leading to a 

2.4 Automated Reaction Optimisation of the 
Continuous Aerobic Oxidation Using a Hybrid 
Algorithm

The aforementioned hybrid algorithm was combined with an 
automated flow reaction system and applied to the aerobic ox-
idation of tetralin (Scheme 1). The reaction was modified from 
the original paper[35] to be performed with air at atmospheric 
pressure. Furthermore, the tetra-n-butylammonium decatungstate 
(TBADT) photocatalyst was replaced with benzophenone as a 
more available and atom economical alternative.

The reaction was optimised to maximise tetralone yield, uti-
lising the reactor setup highlighted in Fig. 6. As previously dis-
cussed the initial global optimisation was performed utilising 
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Fig. 5. Flowchart illustrating the stages of the hybrid algorithm.

Scheme 1. Benzophenone catalysed aerobic oxidation of tetralin to te-
tralone.
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Fig. 6. Reactor setup for case study. The liquid reagent was pumped 
using a JASCO PU980 pump, with air flow rate regulated by a mass flow 
controller. A series of four miniature CSTR reactors were used for syn-
thesis, with UV light supplied through glass ports in the top of each re-
actor. Aliquots of reaction mixture were supplied to the HPLC through a 
VICI Valco 4 port valve sample loop. Quantitative analysis was provided 
by an Agilent 1100 series HPLC instrument. A custom written MATLAB 
program incorporating the hybrid algorithm was used to control the au-
tomated reactor.

Table 1. Global optimisation limits for the tetralin aerobic oxidation. 
Reservoir solutions: tetralin = 0.04 M in ethyl acetate, benzophenone = 
0.5 equiv.

Global Limits Residence Time 
(min)

Oxygen  
Equivalents

Lower 2 1

Upper 30 5

Table 2. Hyperparameters of the final GP model considering all data. 
Lower value indicates greater importance.

Hyperparameter Relative Importance

Residence Time 13.7184

Oxygen Equivalents 4.0281
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reduction in yield at longer residence times. Over oxidation in this 
reaction had previously been observed in the original paper and 
was confirmed through offline analysis (see ESI for details). We 
were unable to prepare analytically pure over oxidation products 
to calibrate the online HPLC due to their decomposition upon sep-
aration. Nevertheless, the mass balance for the reaction was main-
tained above 90% suggesting only small quantities of side-product 
formation.

The global search nature of SNOBFIT is clearly indicated by 
the spread of experiments, with the algorithm attempting to build 
a complete picture of the design space. The screening portion of 
the algorithm then systematically searches for regions near the 
target value based on an internal local optimisation of the sur-
rogate GP model. Analysing Fig. 7, it is clear that although the 
screening portion is able to ascertain the region where a target 
reduction has occurred, it fails to effectively explore certain areas 
(longer residence times) where the yield is likely to lie within the 
target reduction.

3. Conclusions
In summary we have developed a photochemical cascade 

CSTR reactor and fully characterised it through chemical acti-
nometry, showing it to have a photon flux density ten times great-
er than previously reported in batch photochemical reactors. The 
cascade reactor was subsequently demonstrated in the aerobic ox-

idation of tetralin, with the experimental method automated and 
optimised using a hybrid algorithm that combined process opti-
misation with response surface mapping. An optimum tetralone 
yield of 65% was achieved with an 18.3 minute residence time and 
4.69 oxygen equivalents. To the best of our knowledge this is the 
first time a hybrid algorithm combining two synergistic aims has 
been applied to the automated optimisation of a chemical system. 
The development of the hybrid approach described here opens ex-
citing opportunities to increase robustness of chemical processes 
and operate with an improved understanding of conditions sur-
rounding the optimum. 
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Fig. 7. Aerobic oxidation results for SNOBFIT (left) and the screening (right) stages of the hybrid algorithm. Oxygen equivalents are calculated from 
the air to liquid ratio.

Fig. 8. Final contour plot of the surface around the optimum up to the 
target yield reduction set prior to running the algorithm. Fig. 9. GP posterior mean (colour mapped surface), with 95% CI (pink 

surfaces) for the aerobic oxidation reaction. Data is shown as maroon 
diamonds.
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