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Abstract: Carbon monoxide (CO) represents an important C1-building block for the construction of some of the
most fundamental chemical functionalities carrying a carbon–oxygen double bond. Transition metal catalysis
plays a key role in promoting such transformations. We have earlier shown that the combination of palladium
catalysis with CO releasing molecules and the two-chamber reactor, COware, provides a convenient and safe
means for performing traditional Pd-catalyzed carbonylative couplings, as well as being a platform for the dis-
covery of new carbonylation reactions. Furthermore, the method can be adapted to 13C- and 14C-isotope labeling,
as well as providing for a suitable setting for developing efficient carbonylation reactions with 11CO. Herein, we
provide a short overview of our latest findings in this area with emphasis on carbonylative couplings with fluori-
nated building blocks, but also discuss our efforts to develop viable Ni-catalyzed carbonylations with aliphatic
substrates, which can be performed efficiently under low CO partial pressures.
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1. Introduction

Palladium-catalyzed carbonylation re-
actions have proven to be a robust and ver-
satile method for installing carbonyl groups
into a variety of compounds since the initial
reports from Heck and co-workers.[1] Al-
thoughCO is an excellent one-carbon build-
ing block, it is not without its drawbacks as
the handling of the toxic gas is often a cause
for concern. Many research groups have
therefore explored the potential of employ-
ing CO-releasing molecules (CORMs) in
order to eliminate the risks of exposure to
CO.[2] In 2011, we reported on two different
CORMs that could produce CO ex situ in a
two-chamber system enabling a safe and ef-
ficient alternative for performing traditional
CO-consuming reactions.[3]The application
of this methodology in traditional Pd-cata-
lyzed carbonylative transformations, such
as amino- and alkoxycarbonylations and
carbonylative analogs of named cross-cou-
pling reactions (Suzuki-Miyaura and Sono-
gashira) was summarized in an account
from 2016.[4] In this work, wewish to report
on some recent discoveries developed in our
laboratories. Focus will be directed towards
Pd-catalyzed carbonylative transformations
using fluorinated building blocks, and ef-
forts on exploiting nickel as an effective
catalyst for carbonylation chemistry.

2. Carbonylative Reactions using
Fluorinated Reagents

Incorporation of fluorine atoms into
bioactive compounds often leads to in-
creased lipophilicity and metabolic stabil-
ity. Fluorinated drugs have become more

common,[5] and a recent table from the
Njardarson group,[6] summarizing the top
pharmaceutical products by retail sales in
2016, reveals that 12 out of the top 30 low
molecular weight pharmaceutical drugs
contained a fluorinated compound, some
of which are depicted in Fig. 1. As can be
seen in this Figure, different fluorination
patterns (mono-, di- and trifluorination)
and positioning (C(sp2)-F and C(sp3)-F)
are utilized. Therefore, new and efficient
methodologies for installing fluorine at-
oms into bioactive compounds are highly
desirable. We have previously developed a
carbonylative methodology transforming
perfluorinated arenes into the correspond-
ing diarylketone through C–H activation.[7]
In order to access more diverse fluorinated
scaffolds, α,α,α-bromodifluoro-carbonyl
compounds were selected as possible cou-
pling partners. Hartwig, Zhang and others
have previously demonstrated the potential
of using these fluorinated molecules in a
range of α-arylation procedures.[8,9] Given
our prior experience with carbonylative
α-arylation reactions for accessing 1,3-di-
carbonyl structures,[10] these fluorinated
molecules were chosen as the electrophile
for forming α,α-difluoro analogs of these
useful scaffolds. The optimized condi-
tions and some representative examples
are depicted in Scheme 1.[11,12] Starting
from different aryl boronic acid derivatives
(Ar-Bpin, Ar-Bnep, Ar-BF

3
K), high yields

could be obtained for the β-ketoamides
such as 1 and 2 and the corresponding
β-ketoester as for 3. This latter compound
could be transformed to the corresponding
α,α-difluorinated acetophenone 4 through
an acid-mediated decarboxylation, or
to pyrazalone 5 via a condensation-acyl
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plethora of organic compounds.[19] Given
our interest in carbonylation and fluorina-
tion chemistry we sought to utilize this
useful reagent in a carbonylative transfor-
mation. Notably, there are no examples of
using TMSCF

3
in carbonylation chemistry

in the literature. This can most likely be
ascribed to the instability of the trifluoro-
methyl anion formed in situ. A solution to
this challenge is to form copper-ligated CF

3
complexes, which have been studied by the
groups of Hartwig and Grushin.[20] Wu and
co-workers have recently published a car-
bonylative transformation of aryl iodides
using stoichiometric ‘CuCF

3
’ for accessing

trifluoromethyl ketones.[21] Similar to this,
the Grushin group have studied the forma-
tion of fluorinated ketones from acid chlo-
rides and stoichiometric ‘CuCF

2
CF

3
’.[22]

Since the free CF
3
anion is not present in

the above-mentioned strategies, addition to
the electrophilic fluorinated ketone forming
the corresponding hexafluoroisopropanol
(HFIP) or decafluoroisopropanol derivatives
was avoided. Nevertheless, a carbonylative
approach relying on the double addition of
TMSCF

3
for accessing theHFIPmotifwould

be interesting as compounds containing this
motif display interesting inhibitory activity
for the enzyme malonyl-CoA decarboxyl-
ase.[23] This goal was realized by applying
a Pd-catalyzed carbonylative transforma-
tion of aryl bromides to the corresponding
acid fluorides, developed by Manabe,[24]

matic boronic acids and phenylacetylene or
pentyne allowed for the isolation of enones
14–16 in good yields. Alkyl iodides con-
taining longer perfluorinated chains could
also be utilized as exemplified by com-
pounds 17 and 18. Furthermore, applying
ethyl α,α,α-bromodifluoroacetate, similar
to the work shown in Schemes 1 and 2,
generated the desired 1,5-ketoester 19 in a
reasonable yield (55%). Interestingly, when
2-ethynylanilines were investigated in the
presence of a catalytic amount of boronic
acid (for catalyst activation), the formation
of the indolin-2-ones could be achieved as
exemplified with the products 20 and 21.

The developed methodologies presented
vide supra all relied on fluorinated electro-
philes. The most popular fluorinated nu-
cleophile is arguably the Ruppert-Prakash
reagent (TMSCF

3
), which has been widely

used for introducing a CF
3
group into a

substitution sequence. The β-ketoamide
6 was isolated using 13CO generated from
13COgen in a good yield (75%), and could
further be isotopically-enriched by reduc-
tion using NaBD

4
to the [M+4]-diol 7.

The developed methodology illustrated
in Scheme 1 was limited to aryl boronic
derivatives. The concept could nonethe-
less be extended to include aliphatic boron
reagents[13] by lowering the temperature
and increasing the CO pressure as shown
in Scheme 2.[14] The nucleophilic boron
reagents were obtained from the hydrobo-
ration of the corresponding alkene in the
presence of (9-BBN)

2
. Octyl-substituted

α,α-difluoro-β-ketoamides 8 and 9 could
be isolated in good yields and 13C-labeling
was also possible using 13COgen as for
compound 10. Hydroborated styrenes could
also be utilized as nucleophiles for this car-
bonylative cross-coupling as exemplified
by β-ketoamides 11 and 12. Notably, the
C(sp2)-Br bond in 11 remained untouched
under thesemild conditions allowing for po-
tential further manipulations. Furthermore,
three additional fluorine atoms could be
incorporated into the desired product 12
by having a CF

3
-group pre-installed on the

electrophile. Finally, a mono-fluorinated
β-ketoester 13 could be generated in a good
yield by employing ethyl 2-bromo-2-fluo-
roacetate as the electrophile.

Besides α,α,α-bromodifluoroamides
and esters described above, perfluorinated
alkyl iodides have also been examined as
electrophiles in transition-metal catalyzed
reactions. Nevado and Chajadaj reported
on the exploitation of such compounds in
three-component Pd-catalyzed reaction
with boronic acids and alkynes to access
tri- and tetra-substituted perfluorinated
olefins.[15] Furthermore, a four-component
methodology based on these reports in-
corporating CO as the fourth reactant for
making α,β-unsaturated esters and am-
ides was recently reported by Liang and
co-workers.[16] Inspired by these results,
we recently developed a Pd-catalyzed
four component methodology for access-
ing perfluorinated enones and indolin-
2-ones.[17,18] Representative examples are
illustrated in Scheme 3.

Using perfluorinated iodobutane as the
electrophile combined with (hetero)aro-
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Scheme 1. Access to β-aryl-α,α-difluoro-β-ketoamides and -esters using aryl boronic acid deriva-
tives.
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diarylaniline[33] scaffold did not provide any
positive results for thecarbonylativeNegishi
cross-coupling chosen as the test reaction.
Nevertheless, an effective catalyst was pro-
duced from the combination of NiCl

2
and

the 8-aminoquinoline-based pincer ligand
reported by Punji and co-workers[34] for the
carbonylative coupling of benzyl bromides
with alkyl organozinc reagents as demon-
strated in Scheme 5.[35] Pentafluorinated
benzyl bromide proved to be an effective
coupling partner providing ketone 31, and
otherwise reactive electrophiles for tran-
sition metal cross couplings such as aryl
tosylate, aryl bromide or even aryl iodide
were well-tolerated under the optimized
conditions providing the desired carbon-
ylative coupling product 32–34. Benzylic
heterocycles such as a pyridine, pyrazole
or benzothiophene could be activated as
electrophiles providing ketones 35–37, re-
sp., with the latter being formed as its car-
bon-13 labeled version when 13COgen was
applied. Ketones 31–37 were all prepared
using a propyl organozinc reagent, howev-
er, other aliphatic Negishi reagents carrying
amasked aldehyde, an ethyl carboxylate, an
olefin or a cyclopentyl ring could all form
the corresponding ketones 38–41 in high
yields from 1-(bromomethyl)-4-(tert-butyl)
benzene. The mechanism for the transfor-
mation is proposed to go through a catalytic
cycle involving a bimetallic oxidative ad-
dition sequence as earlier demonstrated by
Hu in his work on the use of Ni(ii)-pincer
complexes for the highly effective coupling
of alkyl Grignard reagents with alkyl ha-
lides.[36,37]

4. Conclusion

In this short account, we have present-
ed some of our most recent findings in the
pursuit of novel carbonylative transforma-
tions. Aromatic and aliphatic organobo-
ron reagents could be coupled to α,α,α-
bromodifluorinated carbonyls forming a
range of α,α-difluorinated β-ketoamides
and esters. Furthermore, perfluorinated al-
kyl iodides could effectively be combined
with CO, aryl boronic acids and alkynes
in a four-component reaction providing ac-
cess to perfluorinated enones and indolin-
2-ones. Additionally, the Ruppert-Prakash
reagent was demonstrated to participate
in a carbonylative transformation forming
aryl hexafluoroisopropanol derivatives in
good yields from aryl bromides and fluo-
rosulfates. Finally, a rare example of a Ni-
catalyzed carbonylative cross-coupling for
the construction of C(sp3)-C(sp3) ketones
was demonstrated enabled by a new pincer
ligand. Future work will focus on expand-
ing both the methodologies and in particu-
lar for obtaining a better understanding of
the operating mechanisms.

3. Nickel-catalyzed Carbonyative
Reactions

The carbonylative transformation pre-
sented vide supra all relied on ligated pal-
ladium complexes as the active catalyst.
Considering the availability and cost of
palladium, the development of similar car-
bonylations relying on catalysts prepared
from less expensive Earth-abundant met-
als would be noticeably more desirable. In
this respect, nickel is interesting being a
first-row transition metal in the same main
group as palladium. However, until recent-
ly, only sporadic examples on the use of Ni-
catalyzed carbonylative reactions have been
reported in the literature,[29] which is most
likely due to the preference of Ni(0) to form
stable carbonyl clusters in the presence of
CO (e.g. Ni(CO)

4
). Therefore, solutions

such as slow CO-release from formates or
omission of stirring have been presented by
Ogoshi.[30] In an attempt to develop a more
general Ni-catalyzed system suitable for
handling a CO-atmosphere, we recently de-
cided to investigate nickel-pincer complex-
es. These tri-coordinated ligands have been
demonstrated to chelate a range of metals,
and thus should be good candidates for
avoiding deactivation of the nickel catalyst
into carbonyl clusters. Screening different
pincer ligands based on a pyrrole-[31,32] or

followed by addition of two equivalents
TMSCF

3
as shown in Scheme 4.[25]

5-Bromopyrimidineor3,5-dibromopyr-
idine could effectively be transformed
to incorporate one or two HFIP groups,
respectively, as shown with compounds
22 and 23. Fluorosulfates have recently
emerged as reactive coupling partners for
cross-couplings or SuFEx click chemistry
as introduced by Sharpless.[26]Veryser et al
recently developed an efficient protocol for
converting phenols into fluorosulfates.[27]
Thismethod could be utilized to convert es-
trone into the corresponding fluorosulfate,
which was a suitable electrophile for the
HFIP-transformation as demonstrated for
the product 24. Furthermore, instead of em-
ployingCOgenas theCOsource,CO

2
could

be exploited in the presence of a disilane
and catalytic CsF providing a similar yield
of the hexafluoride-containing compound
24 (68%).[28] 13C-labeling of estrone proved
possible by employing 13COgen (25). The
ketone group remained untouched under
these conditions, however, having more ac-
tivated ketone groups present in the start-
ing material allowed for the incorporation
of an additional CF

3
group as exemplified

with compound 26. Finally, two bioactive
molecules could be isolated in high yields
including their 13C-isotopically labeled ver-
sions (compounds 27–30).
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