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Bioinspired Catalytic Generation of Main-
group Electrophiles by Cooperative Bond
Activation

Francis Forster and Martin Oestreich*

Abstract: Catalytic processes involving cooperativity have seen tremendous progress in recent years and im-
pressive new synthetic methodologies have been developed. Inspired by the cooperative heterolytic H, split-
ting in [NiFe] hydrogenases, Ohki and Tatsumi designed cationic ruthenium thiolate complexes with a tethered
sulfur ligand. Over the last decade, we have demonstrated the facile activation of main-group hydrides such
as hydrosilanes, hydroboranes, DIBAL-H, and hydrostannanes by the Ru-S bond in Ohki-Tatsumi complexes.
This account illustrates these E-H bond activations and highlights selected catalytic applications, particularly
dehydrocouplings, of the generated main-group electrophiles.
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1. Introduction

Knowledge of biochemical pro-
cesses and their underlying mechanisms
is a source of inspiration for the inven-
tion of new synthetic transformations.
Cooperative bond activation involving
metal-ligand cooperation is one such ex-
ample.l'l Metal-sulfur bonds[?! as found
in [NiFe] hydrogenases are able to coop-
eratively split H, (Scheme 1, left).l3! The
heterolysis of H, presumably occurs at the
Ni—S(Cys) bond of the active site of the
[NiFe] hydrogenase, resulting in the for-
mation of a nickel hydride and a proton-
ated sulfur ligand. Reactions of this type
can also be viewed as small-molecule
activation by a transition-metal frustrated
Lewis pair (FLP).[*l This fascinating in-
sight stimulated us to investigate the gen-
eration of main-group electrophiles such
as silylium, borenium, alumenium, and
stannylium ions by heterolytic cleavage

of E-H bonds (E = SiR3, BR,, AIRQ, and
SnR,). Ohki and Tatsumi had designed
mononuclear catalysts containing Power’s
SDmp ligandB! (Dmp = 2,6-dimesityl-
phenyl) to mimic hydrogenase-like H,
splitting (Scheme 1, right).[%2 Rhodium
complex [1]+[BArF4]* and iridium com-
plex [2]*[BAr" |~ were particularly active,
promoting the H, heterolysis even at cryo-
static temperatures.

However, dissociation of the SDmp
ligand occurred after the bond-activation
event but tethering one of the mesityl
groups of the SDmp ligand to the metal
center prevented this problem. This is
realized in ruthenium complexes [3]*[X]~
(Scheme 2), and Ohki and Tatsumi dem-
onstrated the cooperative activation of
H, by [3]"[BAr",]" in the hydrogena-
tion of acetophenone to 1-phenyletha-
nol (not shown).[”l Together with Ohki
and Tatsumi, we have employed com-
plexes [3]*[X]~ for cooperative Si—HI8-12]
as well as B-HI!3! and, more recently,
Al-H!4I as well as Sn—HI!5! bond activa-
tion (Scheme 2, left). The Ru-S bond in
[3]*[X]~ was shown to split E-H bonds
heterolytically into a hydride and the
corresponding proton or main-group cat-
ion. The molecular structures of three
of these adducts were secured by X-ray
diffraction (Scheme 2, right). The hydro-
silane adduct [3a-EtMe SiH]*[BAr",]-
showed complete cleavage of the Si-H
bond (Si--H distance: 3.27 A) whereas
both the hydroborane adduct [3a-9-
BBNJ*[BAr* ,J~and the hydroalane adduct
[3a-iBu, AIH]*[B(CF,),]- still exhibited
bonding character between the E and the
H atoms (B-H bond length: 1.55 A and
Al-H bond length: 2.16 A). Additionally,
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for adduct [3a-iBu,AIH]'[B(CF,),]" a
Ru---Al interaction was observed (Ru---Al
distance: 2.78 A). Quantum-chemical
calculations describe this bonding situa-
tion as a three-center-two-electron (3c2e)
donor-acceptor o(Ru-H)—Al interac-
tion. In this account article, the applica-
tion of these sulfur-stabilized main-group
cations in catalysis will be discussed with
an emphasis on dehydrogenative coupling
reactions.

2. Dehydrogenative Silylation and
Borylation of C(sp?-H Bonds

Extensive experimental and computa-
tional studies concerning the cooperative
Si-H bond activation with [3]*[BAr",]-
were carried out.[8] NMR spectroscop-
ic analysis of the hydrosilane adducts
[3-R,SiH]*[BAr",]- showed a diagnostic
hydride resonance of 8('H) ~ —8.0 ppm
and °J,,, coupling constants of ~49 Hz.
The corresponding sulfur-stabilized sily-
lium ions had chemical shifts in the range
of 8(**Si) ~ 18-42 ppm. The first example
of a catalysis by ruthenium complexes
[3]+[BArF4]* involving sulfur-stabilized
silicon electrophiles was the dehydroge-
native silylation of N-protected indoles
4 (45, Scheme 3, left).[%l Cooperative
Si-H bond activation combined with
electrophilic aromatic substitution (S, Ar)
afforded the C3-silylated indoles 5 exclu-
sively. It was shown that various alkyl and
halogen substituents in different positions
of the arene ring were well tolerated, as
was substitution at C2.

A few years later, we accomplished the
cooperative activation of B-H bonds in
hydroboranes using catalysts [3]*[BArF4]*
to generate sulfur-stabilized borenium
ions.31 For alkyl-substituted boranes,
adducts [3-R_BH]*[BAr",]- showed hy-
dride shifts of 8('H) ~ —12.0 ppm and *J,,
coupling constants of ~18 Hz. Activation
of oxygen-substituted boranes such as
pinacolborane (pinBH) and catecholbo-
rane (catBH) was also achieved; the cor-
responding chemical shifts of the hydride
were shifted to higher field and coupling
constants were larger. Detection of the ''B
nuclei in adducts [3'R2BH]+[BArF4]* was
not feasible because of rapid quadrupolar
relaxation. Analogously to the dehydroge-
native C-H silylation, these boron elec-
trophiles engaged in the dehydrogenative
borylation of N-protected indoles 4 to fur-
nish C3-borylated indoles 6 with excellent
regioselectivity (4—6, Scheme 3, right).!'
Alkyl-, dimethylamino-, and bromo-sub-
stituted indoles 4 reacted smoothly at el-
evated temperatures.

In contrast to C—H bond activation typ-
ically favoring reaction at the C2 position
of indoles, the above shown C3 silylation

Cys
S Cys Cys Cys
NG ¢
xS (LRSI ()
oc-f e\ N S . )
¢ s ‘ H-H H H
Cys Cys
/R /R 1 /R
M—S  <— |IM--$ — ['/\4]_3\ = "H- and E*"
- et KRS (I'BAI" (M = Rhll)
[2]"[BAF ]~ (M = Irlly
(E = H, SiRs, BRy, AIR,, SnRy)

Scheme 1. Left: Active site of [NiFe] hydrogenase (X = OH or O, Cys = cysteine), assumed H,
heterolysis (top), and cooperative activation of E-H bonds at transition metal—sulfur bonds (bot-
tom). Right: Cationic complexes for cooperative activation of dihydrogen developed by Ohki and
Tatsumi. Arf = 3,5-bis(trifluoromethyl)phenyl.
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Scheme 2. Left: Tethered Ru-S complexes [3]*[X]- and cooperative bond activation of E-H
bonds [E = H, Si, B, Al, and Sn]. Right: Molecular structures of [3a-EtMe,SiH]*[BAr" - (top, repro-
duced from ref. [8b] with permission from the Royal Society of Chemistry), [3a-9-BBN]*[BAr" |-
(middle, reprinted with permission from ref. [13]. Copyright 2013 American Chemical Society),
[3a-iBu,AIH]*[B(C,F,),]- (bottom, reprinted with permission from ref. [14]. Copyright 2017
American Chemical Society). Counteranions in the crystal structures omitted for clarity. Bond
lengths given in A.
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Scheme 3. Intermolecular electrophilic C—H silylation (left) and borylation (right) of N-protected

indoles. Ar,P = (o-FCH,),P
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or borylation is the result of electronic
control, as expected for an S Ar mecha-
nism.!"" If the C3 position is occupied by
a methyl group, the C2-silylated or -bory-
lated indoles 5 or 6 were not obtained.
The use of a deuterated hydrosilane or
hydroborane helped to exclude a pathway
involving hydrosilylation or hydrobora-
tion followed by indoline-to-indole oxida-
tion as no deuterium incorporation at C2
was observed. A plausible catalytic cycle
is depicted in Scheme 4. The Ru-S bond
cooperatively activates the E-H bond
([31*=[3-R EH]"), and subsequent transfer
of the main-group cation to indole 4 gives
the Wheland intermediate [8]* (4—[8]")
along with the neutral ruthenium hydride
7 ([3-R EH]*—7). Deprotonation of [8]*
by the weakly basic sulfur atom in 7 then
yields the C3-functionalized indoles S or
6 ([8]*—5/6) and the dihydrogen adduct
[3-H,]* (7—[3-H,]*). The latter immedi-
ately releases H,, thereby regenerating the
active catalyst [3]* and closing the catalytic
cycle ([3-H,]*—[3]").

We anticipated that an intramolecular
C-H silylation of less nucleophilic ben-
zenes by the same mechanism would con-
vert ortho-silylated biphenyls 9 into diben-
zosiloles 10 (Scheme 5).%1 Under more
forcing conditions, quite remarkable func-
tional-group tolerance was demonstrated.
Biphenyls 9 efficiently underwent the ring
closure, thereby providing rapid access to
dibenzosiloles 10 functionalized at both
phenylene groups. By combining these in-
ter- and intramolecular electrophilic C-H
silylations, we achieved the catalytic syn-
thesis of indole-fused benzosiloles starting
from 2-aryl-substituted indoles and dihy-
drosilanes (not shown).[%!

The low hydricity of the intermediate
ruthenium hydride 7 (allowing for dehy-

+
)
R AP oy o R
% BAr /
| [3d]* [BArF4]* |
HN H o (10-30mol %) R
Si-R toluene, 140 °C ~
R (microwave)
30-60 min
R' —H-H R'
9 10: 52-99%
R =Me, Ph; R'=H, CI 13 examples
R" = Me, CI, CF3,
OSitBuPh,, pyrrolidinyl

Scheme 5. Intramolecular electrophilic C—H
silylation of arenes. Ar,P = (o-FC H,).P.

drogenative couplings rather than hydrosi-
lylations) led us to investigate the reactivi-
ty of enolizable ketones 11 (X = O) toward
the Ohki-Tatsumi complexes [3]*[X] and
hydrosilanes (Scheme 6, top left).[1%l
These reactions yielded, in the presence
of catalyst [33]+[BArF4]*, silyl enol ethers
12 (11-12) instead of the expected si-
lyl ethers 13 as the major products. The
substrate scope is broad and ranges from
differently substituted aryl groups to
purely aliphatic ketones. Increased ste-
ric hindrance, i.e., ortho-substitution in
acetophenone derivatives, favored the
corresponding silyl enol ethers 12 with
significantly higher selectivity. Applying
deuterated hydrosilanes in the catalysis
showed deuterium incorporation in the
o-position of silyl ethers 13; we explain
this by the subsequent hydrogenation of
the initially formed silyl enol ether 12 by
in situ-formed [3a-H |* (12—13).01061 We
later extended this methodology to enoli-
zable ketimines 11 (X = NPG) (Scheme
6, top right).[1%] The choice of the bulkier
catalyst [3b]+[BArF4]* was crucial to sup-
press reduction pathways and, hence,

N-silylated enamines 14 were obtained
with high chemoselectivity (11—14).
Subsequent dehydrogenative silylation
of 14 did form C-silylated N-silylated
enamines 15 but only in trace amounts
(14—15), and hydrogenation of 14 to
amines 16 was observed, also only in mi-
nor quantities (14—16). When perform-
ing these reactions in closed vessels, net
reduction of the C=X bond by the afore-
mentioned dehydrogenation—hydrogena-
tion sequence occurred (11—12—13 or
11—-514—16, Scheme 6, top). Recently, we
were able to perform enantioselective hy-
drogenation with either [(S)-3e]*[BAr",],
coordinated with a chiral phosphine,!'%]I or
[(R)-17a]*[BAr" I, based on an axial chiral
SDmp derivative (Scheme 6, bottom).[10d]
Promising levels of enantioselection were
achieved: ~55% ee with [(S)-3e]"[BAr" |-
and ~40% ee [(R)-17a]*[BAr",]".

After we had developed a 1,4-selective
hydrosilylation of pyridines catalyzed by
[3]+[BArF4]* (not shown),[1al we turned
toward a cascade reaction consisting of
this hydrosilylation, the above-described
dehydrogenative  enamine  silylation,
and retro-hydrosilylation. The overall
sequence corresponds to a formal meta-
selective electrophilic aromatic substi-
tution of pyridines 18 with hydrosilanes
(Scheme 7).11101 Several pyridines 18 were
transformed into C3-silylated pyridines 19
with reasonable functional-group toler-
ance. Monitoring this three-step transfor-
mation by '"H NMR spectroscopy provided
the following mechanistic observations:
i) The 1,4-hydrosilylation of pyridines
18 occurs already at ambient tempera-
ture, resulting in 1,4-dihydropyridines.
ii) The N-silylated enamine unit then un-
dergoes dehydrogenative silylation in the
B-position of the enamine to form the me-

ULSAr

[3]+
release of E-H bond
d/h ydrogen activation

L [RUL
SAr
3PH i E=BRy, SiRy RsP

[3-Hal* 3R EH]*

deproto- silyl/boryl
nation transfer
E H
[@Ar
\ \
H N H

SAr

N .
PG PG
Z
8 "

8] PG
Wheland
intermediate

Scheme 4. Proposed mechanism for the inter-
molecular electrophilic C—H silylation and bory-
lation of N-protected indoles 4 by [3]*[BAr* ]-.
Counteranions omitted for clarity.

+
B ULT
EtsP oy p o
BAr4
[3a]" [BArF4]’
(0.5 mol %)

Si—H (1.0 equiv) X
n-hexane R)K/ H
rt., 5 min

—H-H 1
X=0 Si = Me,PhSi
82-98% yield,
24 examples

[(S)-3e]"[BArf,I-

+
)
Prap” SAr
P13 BArF,-
[3b]*[BAIF,]-
(1.0 mol %)
Si-H (1.0 equiv) N
CGDS
—H-H 14 15 16
X =NPG H
56-99% conv.,
31 examples

(R}-17a]"[BArTy]-

Scheme 6. Top: Dehydrogenative coupling of enolizable ketones (left) and imines (right) with
hydrosilanes. Highlighted are the major products of catalysis in open vessels. Bottom: Chiral
catalysts for enantioselective hydrogenations in closed vessels.
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ta-silylated 1,4-dihydropyridines. iii) The
1,4-hydrosilylation is reversible,!'!cl and
these 1,4-dihydropyridines rearomatize at
elevated temperature to yield the desired
C3-silylated pyridines 19.

3. Hydrodefluorination by
Alumenium lons

Main-group electrophiles are known to
mediate hydrodefluorination reactions.!7]
We had previously shown that the sulfur-
stabilized silylium ion generated from
hydrosilanes by catalyst [3]+[BArF4]‘ is
sufficiently fluorophilic to hydrodefluo-
rinate electron-rich CF,-substituted ani-
lines (not shown).['2l However, this ca-
talysis required high catalyst loadings,
an external base, and rather forcing reac-
tion conditions. As such, we pursued the
related activation of DIBAL-H for the
same transformation under milder condi-
tions.[!4l Activation of DIBAL-H at the
Ru-S bond led to the formation of adduct
[3-iBu,AIH]*[B(C/F,),]- with chemical
shifts for the hydride of d('H) = —12.0
ppm and ZJH,P coupling constants of ~26
Hz. Detection of the sulfur-stabilized alu-
menium ion was not achievable. Similar
to the activation of hydroboranes,!'3! ob-
servation of the ?’Al nucleus (I = 5/2) by
NMR spectroscopy failed because of high
line width. Due to the enormous fluorophi-
licity of the generated alumenium ions, a
change of counteranion to the more robust
[B(C,F)),I", devoid of C(sp’)-F bonds,
was essential to reach high conversions.
However, the dominant reaction pathway
was the hydrodefluorination coupled with
Friedel-Crafts benzylation of the arene
solvent (Scheme 8). Several substituents
in the CF,-containing substrates 20 were
tolerated, and various electron-rich arenes
21 were converted into diarylmethanes 22
in high para:ortho ratios, usually above
70:30.

.
[RG]_QA
PrsP” r
T3 BArF,~
; [3b]*[BArT,] (4.0 mol %) si
% Si-H (10 equiv) = !
R t R
N 80 “noe a24 h N
18 ' 19
—H-H
Si = Me,PhSi
_ | Si /@/Si R\(TSI'
SN RSN SN
R-—
P
24-86% 34-35% 65%
R =H, NMe,, Me, R = Me, iPr R =Me
F, Cl, CF4

Scheme 7. Intermolecular formal electrophilic
meta-C-H silylation of pyridines.

4. Dehydrogenative Stannylation of
C(sp)-H Bonds

Exploring the cooperative activation
of other main-group hydrides steered us
toward hydrostannanes.[!3] These display
markedly different reactivity compared
to hydrosilanes, leading to fragile ad-
ducts. Nevertheless, NMR spectroscopic
analysis of the hydrostannane adducts
[3-R,SnH]*[X]" showed parallels to the
activation of hydrosilanes: chemical shifts
for the hydride of 8('H) ~ —8.5 ppm with
*J,;» coupling constants of ~48 Hz. The
corresponding sulfur-stabilized stanny-
lium ions had chemical shifts of &(''°Sn)
=~ +155 ppm. This unprecedented catalytic
generation of stannylium ions found ap-
plication in dehydrogenative stannylations
of terminal alkynes 23 (Scheme 9, left). In
contrast to the hydrostannylation products
25 usually obtained from transition-metal
catalysis with hydrostannanes, a broad
scope of aryl-, alkyl-, silyl-, and vinyl-
substituted alkynes 23 reacted smoothly
to give dehydrocoupled 24 almost exclu-
sively. To explain this high chemoselec-
tivity we proposed catalytic intermedi-
ate [26]*, in which the stannylium ion is
transferred to the C-C triple bond to form
a B-tin-stabilized vinyl cation, which like-
ly adopts a bridged structure (Scheme 9,
right). Subsequent abstraction of the pro-
ton o to the tin atom in [26]* by the neu-
tral ruthenium hydride 7 forms the alkynyl
stannanes 24 and liberates dihydrogen.

5. Conclusion
The cooperative catalysis described

herein is a powerful tool to form new car-
bon-main-group element bonds. Over the

past decade, our laboratory succeeded in
the generation of silylium, borenium, alu-
menium, and stannylium ions by heterolyt-
ic E-H bond cleavage at Ru—S bonds, and
we have demonstrated the high reactivity
of these main-group cations in various cat-
alytic reactions. The low hydricity of the
ruthenium(11) hydride with its adjacent ba-
sic sulfur ligand turned out to be crucial for
efficient dehydrogenative couplings.
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