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Abstract: Our group focuses on the development of computational methods derived from quantum mechanics
and their application to a variety of challenging systems ranging from (bio-)molecules over coordination com-
pounds to solar light-driven processes. In this review, we describe our recent activities for accurate calculation
of spectroscopic properties. Emphasis is put on forefront methods for vibrational spectroscopy, in particular
with respect to condensed phase systems, based on ab initio molecular dynamics. This approach has several
advantages compared to standard static approaches and proven to be a highly valuable tool for in-depth analysis
of complex systems.
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1. Introduction

Modelling is nowadays an important
tool and becomes even more and more im-
portant in view of the fast growing power
of computers and simulation methods. In
the field of chemistry dealing with sys-
tems on an atomic level, various methods
derived from quantum mechanics have
been developed in order to obtain detailed

and accurate insight into a wide range of
properties and processes. For instance, in
our group, we have, among others, focused
on solar light-driven water splitting[1–12] for
sustainable hydrogen production and in
silico design for catalysis, which will be
described in more detail in a forthcoming
CHIMIA issue.

Calculations are often used in con-
junction with experiments where they can
not only confirm experimental findings
but also provide essential additional in-
formation not available from experiment.
Ideally, computations are used at the first
place to reliably predict chemical systems
with certain desired properties (in silico
design) so that potentially expensive and
hazardous experiments can be avoided.
The knowledge gained from the detailed
computational study of the properties and
behaviour of the system of interest and
its spectroscopic characterization lay the
ground for profound structure–activity re-
lationships paving the way for informed
design of novel compounds (see Fig. 1).

Image taken by
Alessandro Della Bella.



 
 

Fig. 1. Interplay
between different
research direc-
tions pursued in our
group: computational
spectroscopy, study
of functional com-
pounds, and in silico
design.
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dynamics (MD) where the electronic and
nuclear motions are decoupled in that
sense that the time-independent electronic
Schrödinger equation is solved by means
of DFT for every nuclear configuration
along the AIMD trajectory with the elec-
trons being in the ground state.[30] The nu-
clei move as classical particles according
to Newton’s equation of motion in a poten-
tial given by the Born–Oppenheimer po-
tential energy surface evaluated by solving
the electronic Schrödinger equation and
corresponding electronic energy gradients
at each nuclear configuration. Using DFT-
basedMD, the conformational phase space
can be explored at ambient conditions, tak-
ing into account realistic thermodynamic
conditions and environmental effects as
employed, for example, in experiment.
Vibrational spectra can be obtained from
MD trajectories via Fourier transformation
of certain time correlation functions. This
ansatz has the advantage that band shapes
are directly obtained from the calculation
and no artificial broadening needs to be ap-
plied in contrast to the static approaches
mentioned above. Additionally, certain an-
harmonicity effects are included since no
specific shape of the potential energy sur-
face is assumed contrary to the harmonic
approximation.[31]

Environmental effects and generally
condensed phase systems can be treated in
a reliable way by using periodic boundary
conditions. A simulation box size, which
is large enough to recover the bulk proper-
ties of the solvent(s) far enough from the
solute(s), ensures that the system contains
enough solvent molecules to capture all
interactions between the solvent(s) and
solute molecule(s). A DFT-based MD ap-
proach leads in general to a higher compu-
tational cost, in particular due to the larger
model systems containing more solvent
molecules and the required sampling times
(usually in the range of picoseconds), com-
pared to a static calculation within the har-
monic approximation dealing onlywith the
solute in the gas phase or combined with
approximate solvent continuum model
and/or several explicit solvent molecules.

3. Novel Approaches Based on
ab initio Molecular Dynamics

3.1 Efficient Analysis of Spectra of
Complex Systems

IR spectra are obtained from MD simu-
lations via time autocorrelation functions
of the electric dipole moment (see ref. [31]
and references cited therein). MD trajecto-
ries provide a wealth of information due to
the sampling of the conformational phase
space and the typically quite large number
of molecules in the simulation cell. In order
to facilitate an analysis of the correspond-

Qj = L(j) ·Rmw =
M�
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α=1
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Rmw
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where the normal mode L(j) specifies the
motion of the nuclei corresponding to Q

j
.

In order to solve the electronic Schrödinger
equation, Kohn–Sham DFT[18] is com-
monly employed. It usually yields the best
compromise between accuracy and com-
putational effort and is also the method of
choice for the calculations presented in this
article.

2. Ab initio Molecular Dynamics for
Vibrational Spectroscopy

Employing DFT and the harmonic ap-
proximation is currently the standard way
to obtain vibrational spectra at a rather low
computational cost. This comes with sev-
eral drawbacks since the dynamics of the
systems is not considered and anharmonic-
ities are not included into the calculation.
The system under study is assumed to be
at its equilibrium structure, i.e. a geometry
optimization is performed before the vibra-
tional analysis assuming a temperature of 0
K, which can be in particular problematic
for molecules with many conformational
degrees of freedom and hydrogen-bonded
systems. Since such calculations provide
only vibrational frequencies and corre-
sponding intensities (depending on the
type of spectrum computed), band shapes
are obtained by applying an artificial
broadening after the vibrational calcula-
tion. Certain anharmonic effects may be
included using, for example, perturbation
theory,[19–22] vibrational self-consistent
field[23–26] or vibrational configuration in-
teraction[23,24,27] approaches leading to a
significantly higher computational effort.
Moreover, the compound of interest is
typically only optimized in gas phase. In
a liquid environment, the effect of the sol-
vent can be included by solvent continuum
models, which mimic solvation effects in
an ‘average’ way.[28] However, such ap-
proximate models are parameterized for
specific test sets of molecules and have,
for instance, difficulties to describe direct-
ed bonds such as hydrogen bonds. Several
explicit solvent molecules can additionally
be included into the calculations in order to
improve their description. This introduces
a bias with respect to the exact position and
number of solvent molecules employed in
the static calculation,[7] which can remark-
ably influence the calculated spectrum.[29]

A more sophisticated way is obtained
fromabinitiomoleculardynamics(AIMD),
which samples the conformational phase
space, hydrogen-bonding dynamics, and
other local geometric arrangements. We
rely on Born–Oppenheimer molecular

In chemical laboratories, spectrosco-
py is a default way to elucidate the com-
pounds of interest, and a large variety of
different methods have evolved. For in-
stance, refinement procedures based on
Kohn–Sham density functional theory
(DFT), extended X-ray absorption fine
structure calculations and/or computed
Mössbauer parameters and experimental
data have been developed to determine the
detailed structure of the oxygen-evolving
complex in nature’s photosystem II[13] and
an enzyme,[14] respectively.

A highly valuable approach is vibra-
tional spectroscopy, which has been ap-
plied to systems in the gas and condensed
phase. It can provide information about
structures as well as associated dynamics
as has e.g. been shown for proton-coupled
electron transfer in the excited state.[15]
Among the different techniques in vi-
brational spectroscopy, infrared (IR) and
Raman spectroscopy are the most common
ones used experimentally. The spectra may
in general easily be analyzed for structur-
ally simple, small molecules but become
increasingly crowded and complicated for
larger compounds. Here, calculations are
of great help for in-depth interpretation of
spectra.

The usual way to calculate vibrational
spectra in so-called ab initio approaches
is based on the Born–Oppenheimer ap-
proximation,[16] which is derived in a
non-relativistic framework from the time-
independent Schrödinger equation, and
the harmonic approximation.[17] Here, the
electronic energy E

el
(Rmw) derived from

the electronic Schrödinger equation is
expanded in a Taylor series around the
equilibrium structure (the minimum of the
potential energy is set to the coordinate
origin 0 for the sake of simplicity in the
following):
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M is the number of nuclei and the Greek
subscripts refer to the Cartesian (x/y/z) di-
rections. The mass-weighted coordinate of
nucleus k with mass m

k
in α direction is

evaluated as Rmw
kα

=
√
mkRkα. In the harmonic

approximation, the expansion is truncated
after the term containing the second deriv-
atives of the electronic energy with respect
to mass-weighted nuclear coordinatesRmw,
which is the so-called Hessian matrix. The
first derivatives are zero due to the expan-
sion around the equilibrium structure.
Diagonalizing the Hessian matrix leads to
eigenvectors which are built from linear
combinations of the mass-weighted nu-
clear coordinates and are so-called normal
coordinates Q

j
,
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types of vibrational spectroscopy, which
require properties beyond the electric di-
pole moment. Only a few other types of
vibrational spectra from AIMD have been
published so far. This includes Raman
spectroscopy for which the electric-dipole–
electric-dipole polarizability is needed in
order to calculate a spectrum. The latter can
be obtained by numerical derivatives using
the electric dipole moment in the presence
of external electric fields.[31] A more accu-
rate and computationally cheaper approach
is based on perturbation theory. Using den-
sity functional perturbation theory,[46] we
have implemented an efficient approach
into the CP2K package.[45] Furthermore,
deeper analysis based on local properties
such as inter- and intramolecular polariz-
abilities is easily available (without the
use of computationally more expensive
MLWFs), giving desired supplemen-
tary insight in the system under study.[45]
An example is given in Fig. 2 for the liquid
(S)-methyloxirane. The spectra obtained
from AIMD agree very well with the one
from experiment, in particular with respect
to the band shapes. This is in contrast to

electronic density of the whole system into
electronic densities of subsystems. The lat-
ter are calculated with Kohn–Sham DFT[18]

whereas the computationally cheaper, less
accurate Hohenberg–Kohn formulation[41]
can be used to treat the interactions be-
tween the subsystems. Our derived expres-
sion for local electric dipole moments for
periodic systems allows a computationally
efficient evaluation of local properties and
detailed analysis of subsystems and their IR
spectra.[42] Moreover, electrons do not need
to be assigned to atoms and no approxima-
tions are introduced via diagonalization/
localization as in the case of MLWFs, and
neutral subsystems are automatically ob-
tained. It has been applied to solvated mol-
ecules, liquid mixtures, and molecules on
surface[42] (see Fig. 2).

3.2 Raman and Raman Optical
Activity Spectroscopy

The calculation of IR spectra from
AIMD relies on knowledge about electric
dipole moments. This is in contrast to other

ing vibrational spectra, it is preferable to
evaluate not only the electric dipole mo-
ment of the whole simulation cell but also
local properties such as local electric dipole
moments. This allows access to the contri-
butions of the different compounds/sub-
systems in the simulation cell (e.g. of each
molecule in a liquid) and provides a way for
calculation of vibrational spectra for only
the compounds/subsystems of interest. A
particular difficulty for systems treated with
periodic boundary conditions is the fact that
the electric dipole moment operator is ill-
defined. The calculation of local electric
dipole moments is thus standardly based
on maximally localized Wannier functions
(MLWFs).[32,33] This requires a localization
procedure, which is computationally not in-
expensive, in particular within the Gaussian
and plane waves approach[34,35] used in our
AIMD calculations. Computationally more
efficient approaches are therefore highly de-
sirable. We have derived a novel approach
based on subsystem DFT-embedding,[36–40]
which allows computationally cheap access
to local electric dipole moments The basic
idea of DFT-embedding is to divide the

Fig. 2. Vibrational spectroscopy from ab initio molecular dynamics: first DFT-based MD spectra for Raman optical activity spectroscopy (top, left-
hand side; adapted from ref. [43]), SFG spectroscopy for interfaces (top, right-hand side; adapted from ref. [44]), novel analysis for local properties
(bottom, left-hand side; see ref. [42] for further details), and efficient calculation of Raman spectra (bottom, right-hand side; adapted from ref. [45]).
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4. Conclusion and Outlook

We have briefly reviewed our recent
activities for the development of new com-
putational approaches in the field of vibra-
tional spectroscopy. Emphasis has been
laid on forefront ab initio molecular dy-
namic methods, which, although coming
in general with a higher computational cost
than standard static ab initio approaches,
surpass the latter in several aspects, espe-
cially due to inclusion of anharmonicities
and band shapes in very good agreement
with experiment. In particular, they have
been shown to be essential for accurate
modelling of compounds with high confor-
mational flexibility and hydrogen-bonding
dynamics and sophisticated inclusion of
environmental and solvent effects in con-
densed phase systems such as liquids. We
have presented various novel, computa-
tionally efficient directions ranging from
calculation and in-depth analysis of IR
and Raman spectra to chirality- and sur-
face-sensitive approaches such as Raman
optical activity and sum frequency genera-
tion. These methodologies can be applied
to a broad range of systems, both in the
gas and condensed phase. This opens up
exciting ways for thorough investigation
and additional insight in a broad range of
compounds such as proteins in solution,
complex interfaces, and catalysts for func-
tional processes.
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