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Several Semiclassical Approaches to
Time-resolved Spectroscopy

Jiti Vanicek*

Abstract: Ultrafast spectroscopy allows molecular dynamics to be resolved on the femtosecond time scale.
Whereas such short time scales obviously pose many experimental challenges, they provide an opportunity for
semiclassical methods, which are naturally suited for short time dynamics. Here we review several semiclassi-
cal approaches for evaluating vibrationally resolved electronic pump-probe spectra, starting with the simplest,
‘phase averaging’ or ‘dephasing representation’. We continue by discussing several methods developed in our
group that allow increasing the efficiency (the cellular dephasing representation) and accuracy (cellular dephas-
ing representation with a prefactor) and end with the Gaussian dephasing representation, which, despite its
semiclassical origins, converges to the exact quantum result. The merits as well as shortcomings of the different
approaches are demonstrated on time-resolved stimulated emission spectra of NCO and pyrazine.
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1. Introduction

High time resolution (such as 107 s
or even 107 s) is important for under-
standing physical and chemical processes
induced by the interactions of molecules
with light; indeed, the femtosecond time
resolution has been the main challenge
of ultrafast spectroscopy for almost three
decades. In contrast to the experimental
difficulties, one expects that the short time
scales should simplify theoretical simula-
tions by requiring shorter propagation of
the molecular wavepacket. Yet, whenever
nuclear quantum effects play an essential
role, even short-time simulations of the
time-dependent Schrodinger equation are
difficult because of their exponential scal-
ing with the number of degrees of freedom.

To make such calculations practical, it
is necessary to develop approximate dy-
namical methods, which are feasible with
the computational resources available and,
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at the same time, sufficiently accurate to
answer the questions of interest. In the case
of continuous-wave spectroscopy, where
the light is not pulsed, but its coupling to
the molecular motion is moderately weak
so that the first-order time-dependent per-
turbation theory is valid, a very useful pic-
ture of molecule-light interaction in terms
of wavepacket autocorrelation functions
has been developed already in the 1970s
and 1980s, especially by Heller,['l who
also suggested a very simple semiclassical
approximation,?! now called the thawed
Gaussian approximation, to evaluate vari-
ous types of electronic spectra.

In the field of ultrafast spectroscopy,
one must invoke higher orders of the time-
dependent perturbation theory, a reward
for this effort being an even richer variety
of phenomena. A systematic analysis of
correlation functions and response func-
tions contributing to various types of time-
resolved spectra has been developed in the
1980s and 1990s, and is summarized in a
comprehensive book! by Mukamel, who
also proposed a very simple semiclassical
method, called phase averaging,[*! allow-
ing the evaluation of various types of time-
resolved spectra.

In this article, we review several recent-
ly developed semiclassical methods for
evaluating time-resolved electronic spec-
tra that can be thought of as extensions of
Mukamel’s phase averaging. Starting from
an alternative presentation of linear spec-
troscopy that makes the analogy to nonlin-
ear spectroscopy obvious, we describe the
phase averaging, the dephasing representa-
tion and its several variants that can make
the method more efficient, more accurate,
and sometimes even exact.

2. Time-dependent Approach to
Spectroscopy

2.1 Linear Spectra: Autocorrelation
Function vs. Fidelity Amplitude

In the time-dependent approach to
spectroscopy, pioneered by Heller,l!l the
linear electronic absorption spectrum
o(w) of a molecule can be computed as
the Fourier transform

_4rw & i(0+Eqo/h)t 1
o(w)= She Mo Re_[0 C(t)e ar (1
of the wavepacket autocorrelation function

CO=w y@)=wle™ y) 2

of an initial state |) = | 0,0) given by the
vibrational ground state of the electronic
ground state potential energy surface,
moving on the excited state potential en-
ergy surface described by the Hamiltonian
operator H,. Here u, is the transition di-
pole moment between the ground and ex-
cited electronic states, w is the frequency
of the electromagnetic radiation, and E
denotes the zero point vibrational energy
in the ground electronic state. Eqn. (1) as-
sumes the validity of the electric dipole
approximation (requiring the wavelength
of the electromagnetic field to be much
larger than the size of the molecule), the
first-order time-dependent perturbation
theory (restricting the strength of the elec-
tromagnetic field), Condon approxima-
tion (requiring the transition dipole to be
independent of the nuclear coordinates),
and low temperature approximation (im-
plying that only the ground vibrational
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state |0,0> of the ground surface be occu-
pied initially).

The beauty of Eqns. (1) and (2) lies in
their simple interpretation (see also Fig. 1
(a)): the absorption of a photon of frequency
o instantaneously promotes the stationary
vibrational ground state of the ground sur-
face to the excited potential energy surface,
where this, now nonstationary state starts
moving under the influence of the excited
state Hamiltonian alone. In particular, the
explicit form of the electromagnetic field
does not play any role and the linear ab-
sorption spectrum is determined solely by
the field-free dynamics of the wavepacket
1(7) on the excited surface. Indeed, this is
the content of the linear response theory,
which is here equivalent to the first-order
time-dependent perturbation theory.

Note that since |y) = | 0,0) is an ei-
genstate of /1, the spectrum can be also
written as

4w © o
o@)=7— 12 Re jo F()edt,

2T 3)

@ =Wy, (@) = (w | e [y (4)

is a correlation function, called the fidelity
amplitude,3! between two states y (f) and
(1), both starting from the same initial
state 1y, but one evolved with H and the
other with H|. As the name suggests, the
fidelity amplitude measures the similarity
between the quantum evolutions on the
ground and excited surfaces. This alterna-
tive expression for an electronic spectrum
is not a mathematical curiosity; indeed, it
is the direct outcome of the derivation of
the spectrum using the first-order time-de-
pendent perturbation theory, and it is only
due to the additional assumption that v is a
vibrational ground state (oranother eigen-
state) of H, that one obtains the much bet-
ter known expression (1) for the spectrum
in terms of the wavepacket autocorrelation
function (2).

The less often used correlation func-
tion (4) has, nonetheless, many important

applications: Outside of electronic spec-
troscopy,[®-121 it has proved useful, e.g. in
NMR spin echo experiments!!3! and theo-
ries of quantum computation,®! decoher-
ence,l) and inelastic neutron scattering.[!4]
In chemical physics, the fidelity amplitude
was also used as a measure of the dynami-
cal importance of diabatic,[!5] nonadiabat-
ic,1%1 or spin-orbit couplings,!!'71 and of the
accuracy of quantum molecular dynamics
on an approximate potential energy sur-
face.l18.19]

2.2 Time-resolved Electronic
Spectra

In the case of nonlinear spectra, the
autocorrelation picture is no longer valid,
yet, as we now show, the more general pic-
ture using fidelity amplitude remains ap-
plicable. A wide variety of nonlinear time-
resolved spectra belong to the pump-probe
scheme, in which an ultrashort pump pulse
prepares a nonstationary nuclear wave-
packet in an excited electronic state, and
another ultrashort pulse probes the dynam-
ics of this wavepacket after a certain time
delay 7. There are many possible experi-
mental setups depending on the polariza-
tion and mutual orientation of the pump
and probe laser beams and on the direction
in which the signal is detected, 31 but for the
sake of clarity we will only consider time-
resolved stimulated emission (TRSE) here
(see Fig. 1 (b)).

Besides the assumptions used for linear
spectra, a simplified picture of TRSE takes
advantage of the nonoverlapping pulses
approximation (i.e. the pump and probe
pulses can be treated independently) and
the ultrashort pulse approximation, which
assumes that both the pump and probe
pulses are short compared to the nuclear
time scale but long on the electronic time
scale.

Assuming, for simplicity and as be-
fore, the zero temperature approximation,
electric dipole approximation, and time-
dependent perturbation theory (of which
the third order is now required), the dif-
ferential TRSE spectrum at frequency
and time delay T can be computed as the
Fourier transform

b)

pump

Fig. 1. Schematic representation of physical processes underlying two types of vibrationally re-
solved electronic spectra. (a) Linear absorption. (b) Time-resolved stimulated emission.

o(w,r) c Re jow f(t,7)e“dt 5)

of the wavepacket correlation func-

tionl6:20.21]

S0 =y @0y, (1.0)), (6)

where 7 is the time delay between the
pump and probe pulses, ¢ denotes the time
elapsed after the probe pulse, and

v, )= e |y ™

stands for the initial state evolved for
the delay time 7 with the excited state
Hamiltonian and subsequently for time
¢t with either the ground or excited state
Hamiltonian (j =0, 1).

As written, the correlation function
fit,t) from Eqn. (6) has an immediate in-
terpretation as a quantum fidelity ampli-
tude between states v (¢,7) and ¥, (t,7).
This fidelity amplitude now corresponds
to evolutions for time ¢ + 7 of the same
initial state i with two Hamiltonians, one
Hamiltonian being time-independent and
equal to H, the other becoming time-de-
pendent and given by H| until time 7, and
by H, at later times. Note that the correla-
tion function f{#,7) can be also interpreted
as a correlation function (4) from linear
spectroscopy, but applied to a nonstation-
ary initial state exp (—itH, /h)|ip) prepared
by the pump pulse.[6.7]

3. Several Semiclassical
Approaches to Time-resolved
Electronic Spectra

Correlation functions C(¢), f(t), or
f(t,©) can of course be evaluated exactly
quantum mechanically, but this requires
the exact solution of the time-dependent
Schrodinger equation, which can be pro-
hibitively expensive in many dimensions.
A nice feature of electronic spectra, and
ultrafast spectra in particular, is their
short-time nature, which offers itself to
approximative treatment of dynamics.
Semiclassical approximation provides
a perfect candidate since it is typically
exact for short times while its accuracy
deteriorates at longer times. As the sim-
plest starting point, Heller originally
used a single Gaussian as an ansatz for
the wavefunction, which is exact in up to
quadratic potentials and yields the thawed
Gaussian approximation in general po-
tentials.[?] Alternatively, one may employ
multiple trajectory-based methods such
as the frozen Gaussian approximation,22]
initial value representation,23-24] or their
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combination giving the Herman-Kluk
propagator,[23] but these methods become
quickly expensive since they require
both the Hessian of the potential energy
surface and very large numbers of tra-
jectories for convergence. Here we will
review several variants of an alternative,
very simple semiclassical approximation,
called phase averaging, dephasing repre-
sentation, or Wigner averaged classical
limit, which require only the gradient of
the potential energy, a rather small num-
ber of trajectories for convergence, and
take advantage of the specific form of the
correlation functions corresponding to
electronic spectra.

3.1 Phase-averaging/Dephasing
Representation

A remarkably simple approximation
for the correlation function (or fidelity am-
plitude) f(¥) is given by the so-called phase
averaging, dephasing representation, or
Wigner averaged classical limit[34.7-12.26.27];

Sor @)= [dx, py ()™=, (8)

where D is the number of degrees of free-
dom, p,(x,) is the Wigner phase-space rep-
resentation of the initial state ¥ and

AS(x", 1) =—I;dt'AV(x,,) 9)

is the action due to the difference AV :=
V, -V, between the two potential energy
surfaces along the classical trajectory x,
= (g, p) driven by the averagel3+20.28]
Hamiltonian H= (H,+ H,)/2.

In the original phase averaging,/*l the
weight function in Eqn. (8) was a classi-
cal density o(x,), and three options for
the Hamiltonian used for driving the tra-
jectories were considered: besides /, one
could use H, (suitable for absorption spec-

1
tra) or H, (suitable for emission spectra).

Replacengent of the classical density with
the more accurate Wigner function gave
rise to the name ‘Wigner averaged classi-
cal limit’.[!0.11] The name ‘dephasing repre-
sentation’, on the other hand, suggests that
the overlap of ¥, and v, in this approxima-
tion decays only due to dephasing, i.e. a de-
structive interference, whereas the classical
overlap is assumed to be constant and fixed
at 1. The dephasing representation becomes
applicable to ultrafast spectra after an ap-
propriate generalization of the fidelity am-
plitude. In the case of TRSE spectra (Eqns.
(5) and (6)), the fidelity amplitude can be
approximated as

Sor (6.0 = 172 [ dxypy ()", (10)

where the action difference is given by

ASG )= [ de AV (x,), (11)

and the trajectory x, follows the excited
state Hamiltonian H| for 0 <# < Tand the
average Hamiltonian A for ¢ > 7. (From
now on, for brevity we shall only present
expressions for the TRSE spectra, and no
more for linear absorption spectra.)

Expression (10) immediately suggests
a numerical recipe for its evaluation: 1)
sample initial conditions x, from the phase
space density o, (x,), 2) run classical tra-
jectories with these initial conditions, 3)
evaluate the phase (11) due to the differ-
ence of the potential energies along each
of these trajectories, and 4) average over
these trajectories. In a more compactform,
this recipe can be expressed as

= () @

Pw(x) ’

where (A(x()))l 0, denotes, more generally,
an average of an observable A(x,) over ini-
tial conditions x, sampled from the density
P

There are many ways to derive the
dephasing representation: it can be ob-
tained,[2627] ¢.g. by linearizing the semi-
classical propagator, which is a procedure
inspired by the semiclassical perturbation
theory.[29301 Shi and Gevall?l derived the
same approximation (but referred to it as the
linearized semiclassical initial value repre-
sentation) without invoking the semiclassi-
cal propagator — by linearizing directly the
path integral quantum propagator. Among
the appeals of the dephasing representation
is the ease with which it is numerically eval-
uated: We have shownB!l that the expected
number of trajectories required for conver-
gence of the dephasing representation is
independent of dimensionality, time, and
nature of the dynamics, and depends explic-
itly only on the magnitude of the correlation
function one wants to simulate.

3.2 Increasing the Efficiency and
Accuracy: Cellular Dephasing
Representation with a Prefactor

Unlike other semiclassical methods,
which typically require a Hessian of the
potential energy and thousands or millions
of trajectories for convergence, the dephas-
ing representation only needs the energy
gradient, and about hundred to thousand
trajectories for full convergence. This ex-
traordinary efficiency of the dephasing
representation makes it a promising candi-
date for on-the-fly ab initio evaluation of
time-resolved spectra.

Yet, for large systems, even a thousand
trajectories may be too much to ask for,
and hence we have attempted toreduce the
number of trajectories by so-called cellu-
larization, inspired by cellular dynamics(32]

and Filinov filtering(33-351 used for other
semiclassical methods. In the cellular de-
phasing representation (CDR),[2136] the
initial conditions are grouped into cells of
neighboring trajectories, and contributions
of all trajectories within a cell are evalu-
ated approximately analytically using the
information collected along the central
trajectory of the cell. This leads only to a
minormodification of the numerical algo-
rithm (12), which becomes

fCDR (t,7)= <ACDRefAS(xa,r,t)/rr> (13)

]
Piwr (X)

where A (x,,7,0) is a prefactor!3¢! captur-
ing the contribution of neighboring trajec-
tories and p,,, is the inverse Weierstrass
transform of p, (in other words, it is the
expansion coefficient of o, in a basis of
phase space Gaussians).[30]

Fig. 2 shows that in a two-dimensional
model of NCO,2!l which is only slightly
anharmonic, the cellular dephasing repre-
sentation based on a single trajectory can
yield a time-resolved stimulated emission
spectrum that agrees very closely with the
fully converged dephasing representation
(using over sixteen thousand trajectories).

Although the dephasing representation
is exact for displaced harmonic oscilla-
torsB! and remarkably accurate in chaotic
systems,[20] its efficiency, of course, does
not come for free. Due to its relation to the
semiclassical perturbation approximation,
the dephasing representation breaks down
even for only quadratic perturbations en-
countered already in harmonic systems with
different force constants. Unfortunately,
these are important in so-called ‘silent
modes’ in electronic spectroscopy, which
are modes that are not vibrationally ex-
cited by the electronic excitation; if there

0.8
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1 CDR (N =1)
0.4 4
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041 ‘ ‘ ] :

0.08 0.12
w[a.u]

o (arb. units)

0.10

Fig. 2. Time-resolved stimulated emission
spectrum of a collinear model of NCO from ref.
[21] for a delay time T =500 a.u. =12 fs. The
spectrum obtained with the cellular dephasing
representation (CDR) using a single trajectory
() is in remarkable agreement with the fully
converged spectrum obtained with the original
dephasing representation (DR, computed using
N = 16384 trajectories), which, in turn, repro-
duces the main qualitative features of the exact
quantum spectrum. (Adapted from ref. [21].)
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are many such ‘boring’ modes, the dephas-
ing representation breaks down completely
due to an artificially fast decay of the cor-
relation function. Zambrano and Ozorio de
Almeida proposed?8! a simple recipe for
partially correcting this inaccuracy by in-
cluding a (different) prefactor A, (x,7.0)
in the dephasing representation, resulting
in the dephasing representation with a
prefactor (DRP):

Soro (6:7) = Apgpe™ =) (14)

Pw () ’

It turns out that the two prefactors in
Eqns (13) and (14) can be easily combined,
yielding the cellular dephasing represen-
tation with a prefactor (CDRP),[36 which
may be both more accurate and more ef-
ficient than the original dephasing repre-
sentation:

fCDRp t,7)= <ACDR ADRPeiAS(xo,r,t)/n> 15)

Pt ()

Indeed, Fig. 3 shows on the time-
resolved stimulated emission of pyrazine
that the cellular dephasing representation
with a prefactor is not only more accurate
but also requires fewer trajectories for
convergence than does the original de-
phasing representation. (Note, however,
that this property is not universal, and that
in strongly chaotic systems, such as the
quartic oscillator, the original dephasing
representation can converge faster than the
CDREP, since a few chaotic trajectories can
result in large prefactors that require many
well-behaved trajectories to compensate
this blowup in the final result.3l) Even if
the number of trajectories is reduced by the
cellularization, the cost of each trajectory
increases significantly since the prefactors
Az and A require the evaluation of the
Hessian or even the third derivatives of the
potential energy, unlike the dephasing rep-
resentation for which the force is all that
is needed.

3.3 Making the Dephasing
Representation Exact: Gaussian
Dephasing Representation

An alternative approach for improving
the accuracy of the dephasing representa-
tion replaces the swarm of N independent
semiclassical trajectories with a swarm of
N ‘communicating’ Gaussian basis func-
tions moving along corresponding classi-
cal trajectories. This trick is closely relat-
ed to the basic idea employed in multiple
spawning,371 variational Gaussian wave-
packets, 38! coupled coherent states, and
multiconfigurational Ehrenfest method.[39!
In particular, the states Ilpi(t, 7)) are expand-
ed as '

lw, o= ¢ (D) g, @),  (16)

where |g_(1,7)) is a Gaussian wavepacket
whose center moves along the classical tra-
jectory of H  until the delay time Tand with
the average Hamiltonian H from then on.
The expansion coefficients ¢, (7,7) satisfy
the time-dependent Schrodinger equation

St (H,—ifiD)c,, O0<i<z I
ee; = (H, —ifiD)e , z'<t'<r+t’( )

where Hj is the Hamiltonian matrix, S is
the overlap matrix, and D the nonadiabatic
coupling matrix defined by their matrix el-
ements in the Gaussian basis:

H,,(t,7) =(g,(t.0)|H,|g, (1)),
S,(t.7)  =(g,(t.7)| g,(t, 7)),
D,,(t,7) =(g,(t,7)| &t 7).

(18)

In the Gaussian dephasing representa-
tion (GDR),*01 one runs classical trajec-
tories as in the original dephasing repre-
sentation, but uses them only to guide the
Gaussian basis functions g_(,7). The time
dependence of the expansion coefficients
¢, , are obtained by solving the time-depen-

dent Schrodinger equations (17), and fi-
nally, the fidelity amplitude is evaluated as

Ser @ =¢,(t,7)'S (2,7)¢y(t,7). (19)

Note that if the Gaussian basis g (7,7)
is large enough, the Gaussian dephasing
representation is not a semiclassical ap-
proximation; indeed, it should converge to
the exact quantum answer as the Gaussian
basis approaches completeness. (Beware,
however, of various numerical issues due
to nonorthogonality of the basis, efc.[37-401)

Fig. 4 demonstrates the accuracy of
the Gaussian dephasing representation
on the time-resolved stimulated emission
spectrum of pyrazine, showing that the
Gaussian dephasing representation with
576 basis functions yields a correlation
function and spectrum which are basically
indistinguishable from the exact quantum
analogs, unlike the fully converged de-
phasing representation, which does con-
tain a semiclassical error.

As for the computational cost of the
Gaussian dephasing representation, the
number of trajectories required is much
smaller than in typical semiclassical meth-
ods, and can be even smaller than in the
original dephasing representation since in
the GDR, the trajectories carry with them
Gaussian basis functions, which play a
smoothing role similar to the cells in the
cellular dephasing representation. The
most expensive part per trajectory of the
GDR is the evaluation of the Hamiltonian
matrix elements H_; using, e.g. a local
harmonic approximation for the poten-
tial requires the Hessian of the potential
energy, but one can often get away only
with a linear expansion that only neces-
sitates the gradient, which is already
needed for propagating the trajectories.
The final contribution to the cost is solv-
ing the time-dependent Schrodinger equa-
tion, which scales as O(N?), i.e. cubically
with the number of trajectories, which is

—
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Fig. 3. Time-resolved stimulated emission in the pyrazine S /S, model from ref. [36]. Initial state is the ground state of the S surface and the delay

time between pump and probe pulses is T = 2x10° a.u. =48 fs. Comparison of the exact quantum result, the original dephasing representation (DR),
and the cellular DR with a prefactor (CDRP). (a) Time correlation function (already multiplied by a damping function indicated by a dash-dotted line).
(b) Corresponding spectrum. (c) Convergence error (relative L2 norm error) of the damped correlation function as a function of the number of trajec-

tories N. (Adapted from ref. [36].)
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Fig. 4. Time-resolved stimulated emission in
the same pyrazine S /S, model as in Fig. 3.
Comparison of the exact quantum result, the
original dephasing representation (DR), and
the Gaussian DR (GDR) based on 576 trajec-
tories only. (a) Time correlation function. (b)
Corresponding spectrum obtained as a Fourier
transform of the correlation function multiplied
with a damping function indicated in panel (a)
by a gray dash-double-dotted line. (Adapted
from ref. [40].)

much worse than the linear O(N) scaling
of the dephasing representation, whose N
trajectories are independent. On the other
hand, and in particular in on-the-fly ab ini-
tio applications, the cost of the electronic
structure, especially the Hessian, becomes
easily so high that the cubic scaling of the
solution of the Schrédinger equation may
still be negligible if the number of trajec-
tories is below a few hundred.

4. Conclusions and Outlook

All methods that we have discussed so
far express correlation functions needed in
time-resolved spectra calculations in terms
of interfering contributions from classi-
cal trajectories. This common feature of
all the discussed methods makes possible
their implementation together with an on-
the-fly ab initio evaluation of electronic
structure, possibly turning them into an
automated and almost ‘black box’ tool for
analyzing ultrafast spectra without the ne-
cessity of a tedious construction of global
or semi-global potential energy surfaces.

The accuracy of the approximate meth-
ods, can be, of course, improved in other
ways than using Gaussian basis methods.
Recently,*!l we have described an arbi-
trary-order expansion of the Feynman path
integral representation of the correlation
functions (4) or (6), of which the first-order
expansion yields the dephasing represen-
tation, while the zeroth-order expansion
gives the static classical limit,['9 which it-
self is very useful. It turns out that already
the second order expansion would correct
most of the shortcomings of the dephasing
representation in typical chemical systems
(which are neither exactly harmonic, nor
chaotic); unfortunately, the most straight-
forward implementation is very inefficient.

Another important aspect of ultrafast
spectra not captured by the methods re-
viewed here is the common presence of
nonadiabatic and spin-orbit couplings
between various electronic states contrib-
uting to the spectra, which give rise to in-
ternal conversion or intersystem crossings
between various states. If weak, these pro-
cesses lead only to the broadening of the
spectra, but, if strong, they can completely
change the spectral line shapes. To address
this issue, we have generalized the dephas-
ing representation to the setting of coupled
electronic states and obtained the multiple-
surface dephasing representation'*?] that
can capture the major consequences of the
nonadiabatic or spin-orbit couplings on ul-
trafast electronic spectra. This method can
and has been combined with an on-the-fly
ab initio evaluation of energies, forces, and
nonadiabatic couplings.

Besides the efficiency and ease of on-
the-fly evaluation of electronic structure,
the trajectory-based methods for evalua-
ting ultrafast spectra have another advan-
tage, probably the most important of all.
They provide an intuitive picture of the dy-
namics, which is much easier to decipher
than, e.g. a 30-dimensional wavefunction
in the case of pyrazine. While the simpler
picture of course does not have to be quan-
titatively correct 100% of the time, we
have been time and again surprised by the
qualitative correctness of the semiclassical
result.
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