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Abstract: Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged
to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that
display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex
functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules
(i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation
of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation
efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between
the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells
(i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to
selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration
gradients in artificial organelles.
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1. Introduction

Living cells are the machines of life.[1]
The sophistication of eukaryotic cells is
underscored by the prevalence of organ-
elles that encapsulate different contents
within specialized membrane-bound mi-
croenvironments.[2] This separation from
the bulk intracellular space facilitates the
co-existence of diverse biochemical reac-
tions that culminate into synergistic cellu-
lar functions. To this end, specific proteins
are sorted and delivered to exact spatial lo-
cations within the complex cellular milieu
(i.e. protein targeting)[3] in an unprecedent-
ed manner. To illustrate this, gene expres-
sion is mediated by the spatial separation
of transcription and translation that occurs
in the nucleus and cytoplasm, respectively.
This requires that essential cargoes such as
transcription factors are selectively trans-
ported across a double bilayer membrane
known as the nuclear envelope (NE) that
encapsulates the nucleus.[4] This form of
intracellular communication is known as
nucleocytoplasmic transport (NT), and is
mediated by large perforations in the NE
known as nuclear pore complexes (NPC).[5]

From an abiological perspective, arti-
ficial organelles, molecular factories and
nanoreactors are membrane-bound molec-
ular systems that are envisaged to replicate
or harness the efficacy and complexity of
cellular function.[6] This constitutes a shift
from a ‘one-flask one-reaction’ paradigm
to a systemwhere cross-regulated reactions
take place under spatiotemporal control.[7]
However, this introduces basic logistical
challenges that remain unaddressed. As
a case in point, how are specific proteins
and enzymes (henceforth termed ‘molecu-
lar modules’) recruited into an artificial
organelle to drive such cross-reactions? In
this article, we introduce Nature’s solution
to the problem of molecular logistics in
the context of nucleocytoplasmic transport
regulation. Accordingly, we propose that
an analogous system may be harnessed to
regulate molecular logistics in artificial or-
ganelles and other bio-synthetic systems.

2. Nanoreactors, Artificial
Organelles, and Molecular
Factories

Molecular compartments can be con-
structed from lipid membranes that form
liposomes[8] or from amphiphilic poly-
mers that form polymeric membranes and
vesicles known as polymersomes.[9] Based
on their enhanced mechanical and chemi-
cal stability[10] however, polymer-based
membranes are increasingly being favored
for biomimetic systems[11] and remain the

focus of this article. We kindly refer the
reader to the review article by Scalise et
al. for an in-depth discussion on proteoli-
posomes.[12]

Since their discovery, the encapsula-
tion efficacy of polymersomes has been
shown to protect sugars, enzymes or
proteins against proteolytic attack.[13]
Subsequently, several transmembrane pro-
teins and channels have been successfully
inserted into the polymeric membrane to
render the polymersome permeable to ions
and small molecules, i.e. proteopolymer-
somes. Importantly, this allows for a prod-
uct and/or substrate to be exchanged with
the outside environment so as to support in
situ reactions within the encapsulated enti-
ties.[14] For instance, the insertion of grami-
cidin and ionomycin into the polymersome
membrane facilitates the transport of mon-
ovalent cations (H+, Na+ and K+)[15] and
divalent cations (Ca2+),[16] respectively.
Moreover, electrical and chemical gradi-
ents have been generated by irradiating and
activating polymersomes harboring light-
driven proton pumps such as bacteriorho-
dopsin[17] and proteorhodopsin.[18] The
reconstitution of aquaporin-0 (AQP0) fur-
ther yielded intrinsically osmoregulatory
polymersomes that were able to transport
water molecules across their polymeric
membranes.[19]

To transport larger molecules,
α-hemolysin that bears an inner channel
diameter of ∼2.6 nm has enabled the ex-
change of ions and vital molecules viz.,
ATP[20] while molecules of up to 600 Da
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needed for such molecular modules to
function?

iii) How large are the molecular modules
under consideration, and how should
they be encapsulated or imported?

iv) How will the transport of essential
reactants, ligands and metabolites be
regulated?

v) How will reaction byproducts be re-
moved from the proteopolymersome
interior to the external environment?

vi) What can be used as an energy source
to sustain the longevity and turnover of
such reactions?
Hence, this underscores the need for a

more advanced form of molecular logistics
that goes beyond passive diffusion and size
exclusion. Such a molecular logistic sys-
tem should facilitate the continuous trans-
port of both large and small cargoes, from
proteins to metabolites based on biochemi-
cal specificity and not size exclusion per
se. Moreover, this process should include
an energy supply so as to dictate the direc-
tionality of transport, to accumulate car-

for a summary of several transmembrane
channels that have been engineered into
polymersomes. For a detailed overview of
existing protein reconstitution protocols
into polymersomes we refer the reader to
the review by Garni et al. in this special
issue.[25]

In spite of the abovementioned break-
throughs, we note that transport into pro-
teopolymersomes is largely restricted to
ions and small molecules based on size
exclusion as defined by the inner diameter
of the membrane channel. In contrast, an
ideal molecular factory would resemble
a cell where a number of molecular mod-
ules would perform different activities.
However, to attain a more cell-like system,
it will be necessary to transport diverse
substances into and out of a proteopoly-
mersome, depending on the following:
i) Howmany different types of molecular

modules, enzymes and essential pro-
teins are needed to construct a func-
tional ‘molecular factory’?

ii) What are the optimal concentrations

could traverse the ∼3.3 nm-diameter outer
membrane protein F (OmpF) to diffuse
into the polymersomes.[13b] To further bio-
catalyze reactions,[21] OmpF was chemi-
cally modified with a molecular ‘cap’ that
acted as a pH responsive gate and could be
opened by lowering the pH. In this manner,
a modified OmpF-bearing polymersome
could serve as a nanoreactor by convert-
ing the influx of chromogenic substrate
3,3',5,5'-tetramethylbenzidine (TMB) us-
ing a pre-encapsulated model enzyme
horseradish peroxidase (HRP) within its
lumen. Further, entrapping antioxidant
enzymes within a polymeric membrane
that was leaky to reactive oxygen species
(ROS) could effectively accelerate ROS
detoxification within cells under oxidative
stress.[22] As a step towards multicompart-
mentalization, two different nanoreactors
bearing two different enzymes could be
encapsulated into a larger polymersome[23]
and used to control a cascade reaction
across the compartmental boundaries.[24]
We refer the interested reader to Table 1

Table 1. Selection of polymersomes that harbor transmembrane channels and their cargoes.

Transmembrane Channel Transported
Substrate/
Cargo

Reconstituted
Membrane

Channel Pore
Diameter

Outer
Pore

Diameter

Molecular
Weight

Major
Biological
Function

Ref. Compound Ref.

Gramicidin – ~26 Å ~1.9 kDa Proton pump,

Antibiotic

[26] Monovalent
ions

(H+, Na+, K+)

PMOXA-
PDMS-
PMOXAa

[15]

Ionomycin – ~19 Å ~0.8 kDa Calcium-
transporter,

Antibiotic

[16] Divalent ions

(Ca+)

PMOXA-
PDMS-
PMOXAa

[16]

Outer
membrane
protein F
(OmpF)

~33 Å ~70 Å ~39 kDa Non-specific
transport
channel

[27] Small
molecules
< 600 Da
e.g.

ampicillin,
TMB

PMOXA-
PDMS-
PMOXAa

[13b]

Proteo-
rhodopsin
(PR)

~20 Å ~87 Å ~29 kDa Light-driven
proton pump

[23] H+ P4MVP-
PBD-

P4MVPb

[18]

Bacterio-
rhodopsin
(BR)

– ~43 Å ~27 kDa Light-driven
proton pump

[28] H+ PEtOz-
PDMS-
PEtOzc

[17]

Aquaporin-0

(AQP0)

~1.5 Å ~8 Å ~28 kDa Water channel [29] H
2
O PMOXA-

PDMS-
PMOXAa

[19]

α-Hemolysin ~26 Å ~100 Å ~32 kDa Toxin
secretion
systems

[30] Ions, small
molecules
e.g. toxins,
single DNA

PBD-PEOd [20]

aPoly(2-methyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline; bpoly(4-vinylpyridine)-block-polybutadiene-block-poly(4-
vinylpyridine); cpoly(2-ethyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-ethyl-2-oxazoline); dpoly(butadiene)-block-poly(ethylene glycol).
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Duringimport (Fig.1),Kap-cargotrans-
location is itself an energy-independent
diffusional process.[54] However, an energy
supply is required to establish cargo direc-
tionalityand the terminationof transport.[55]
Moreover, a continuous energy cycle is
required to sustain nucleocytoplasmic
trafficking. This is regulated by the small
GTPase Ran, which has GTP- and GDP-
bound forms localized to the nucleus and
cytoplasm, respectively.[56] RanGTP bind-
ing triggers the release of import cargoes
from Kapβ1 in the nucleus while in the cy-
toplasm RanGAP (Ran GTPase-activating
protein) hydrolyzes RanGTP to RanGDP,
which releases Kapβ1 for another cargo
import cycle.[57] RanGDP is then recycled
to the nucleus by its specific carrier, NTF2
(i.e. nuclear transport factor 2).[58] In the
absence of Kapβ1, even NLS-cargoes that
are smaller than entire Kap-cargo com-
plexes are withheld. Accordingly, NLS-
cargoes are retained in the nucleus upon
dissociation from Kapβ1. The Ran loop
is finally closed by RCC1/RanGEF (gua-
nine nucleotide exchange factor), which
catalyzes the recharging of RanGDP to

es in the FG Nup barrier to open up the
pore.[47]On this basis, Kaps orchestrate nu-
cleocytoplasmic transport by authenticat-
ing and shuttling specific cargoes destined
for the nucleus through the NPCs.

Kaps identify specific cargoes via short
peptide sequences known as nuclear local-
ization signals, or nuclear export signals
(NLSs or NESs).[48] Thus, non-specific
macromolecules, which lack NLS or NES
are rejected by the barrier.[41] On the oth-
er hand, by recruiting Kaps, very large
physiological as well as artificial cargoes
with sizes that span the inner diameter of
the pore are able to translocate the NPC.
These include gold particles decorated
with Kap-cargo complexes (39 nm-diame-
ter overall),[49]Kap-decorated quantum dot
cargoes (30 to 40 nm-diameter overall),[50]
Hepatitis B virus capsids (34 nm-diame-
ter),[51] and messenger ribonucleoproteins
(mRNPs; e.g. Balbani Ring particles),
which appear to elongate to 25 nm-diam-
eter during passage through the central
channel.[52] Indeed, viruses are known to
hijack the Kap-FG pathway in order to in-
filtrate the NPC and the nucleus.[53]

goes within the proteopolymersome (i.e.
against concentration gradients), as well
as to ensure an efficient turnover of reac-
tion byproducts. Quite remarkably, these
key features are known to regulate NT in
eukaryotic cells. In the following section,
we give insight as to how living cells selec-
tively import, compartmentalize and accu-
mulate diverse macromolecular modules
against concentration gradients.

3. Nucleocytoplasmic Transport
and the Nuclear Pore Complex

In eukaryotic cells, the nucleus com-
municates exclusively with the cytoplasm
through proteinaceous pores termed nucle-
ar pore complexes (NPCs).[31] NPCs me-
diate the nucleocytoplasmic trafficking of
substances ranging from the import of tran-
scription factors to mRNA export.[32] It is
estimated that approximately one thousand
translocation events proceed per NPC per
second[33] at a rate of ∼ 5 ms per cargo.[34]
NPCs are constructed from approximately
30 proteins known as nucleoporins (Nups)
that are present in multiples of eight[35] and
amount to an overall mass of ∼60 MDa[36]
and ∼120 MDa[37] in yeast and in metazo-
ans, respectively. Nups are hierarchically
categorized into three architectural sub-
groups:[38] i) membrane Nups that anchor
the NPC to the NE; ii) structural scaffold
Nups; and, iii) a family of intrinsically dis-
ordered Phe-Gly (FG) Nups.

AlthoughNPCsspanspecies-dependent
diameters of between 50 to 100 nm[39] only
small molecules below ∼40 kDa (e.g.water
and ions) can passively diffuse through the
pore whereas large non-specific macro-
molecules are generally withheld.[40]Rapid
and exclusive access through the NPC is
permissible only to transport receptors[41]
(i.e. karyopherins or Kaps) that exceed the
passive limit, such as the classical 97 kDa
import receptor karyopherinβ1 (Kapβ1 or
importinβ[42] or Kap95 in yeast). Hence,
NPCs restrict or promote cargo transloca-
tion via biochemical selectivity and not
size exclusion per se.

Altogether ∼200 FG Nup molecules[35]
tether to the inner walls of the NPC and
manifest the NPC barrier that facilitates
selective transport control. Being intrin-
sically disordered and lacking in second-
ary structure, the ‘polymer-like’ FG Nups
are thought to resemble a ‘supramolecu-
lar hydrogel meshwork’[43] and/or a ‘mo-
lecular brush’ barrier,[44] or combinations
thereof.[45] To bypass the FG Nup barrier,
Kaps and other transport factors,[42,46] har-
bor binding sites that interact multivalent-
ly with the FG-repeat motifs (i.e. GLFG,
FxFG, and FG) that decorate the FG Nups.
This binding facilitates Kap transport by
causing dynamic conformational chang-

Fig. 1. Mechanism of nuclear import. Import receptors (Kapβ1) identify and shuttle NLS-cargo
from the cytoplasm into the nucleus. The receptor-cargo complex is disassembled in the nucleus
by RanGTP, which returns with the import receptor to the cytosol. RanGAP triggers the hydroly-
sis of RanGTP to RanGDP in the cytosol, which frees the receptor for another round of import.
RanGDP is imported into the nucleus by NTF2, where it is recharged into RanGTP by RanGEF. In
the absence of Kaps, non-specific cargoes are rejected by the NPC.
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5. Outlook

The essence of our hypothesis lies in
being able to translate a biological trans-
port mechanism into an abiological molec-
ular logistics system. Such a system would
have the capability to sort and encapsulate
specific molecular modules from a com-
plex environment into artificial organelles
leading to the construction of a molecular
factory. Importantly, we note that such a
molecular logistics system takes a ‘one
size fits all’ approach requiring only that
the cargoes-of-interest bear signal specific
tags that are recognized by the molecular
keys. In this manner, the system can be eas-
ily adapted for constructing different mo-
lecular factories by trafficking molecular
modules of pre-determined functionality.
Further refinements to such a system could
includeexploiting reactionby-products as a
feedback parameter (e.g. to increase trans-
port levels) or as a means of communica-
tion between different molecular factories.
Nevertheless, an immediate challenge will
be to identify suitable molecular building
blocks from which such a molecular logis-
tics system can be assembled. Moreover, it
will be essential to study the reactions that
take place under off-equilibrium thermo-
dynamic conditions within a crowded and
confined aqueous environment.
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