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Abstract: ‘Alchemical’ interpolation paths, i.e. coupling systems along fictitious paths without realistic
correspondence, are frequently used within materials and molecular modeling simulation protocols for the
estimation of changes in state functions such as free energies. We discuss alchemical changes in the context
of quantum chemistry, and present illustrative numerical results for the changes of HOMO eigenvalue of the He
atom due to alchemical teleportation – the simultaneous annihilation and creation of nuclear charges at different
locations. To demonstrate the predictive power of alchemical first order derivatives (Hellmann-Feynman) the
covalent bond potential of hydrogen fluoride and hydrogen chloride is investigated, as well as the hydrogen
bond in the water–water and water–hydrogen fluoride dimer, respectively. Based on converged electron densities
for one configuration, the versatility of alchemical derivatives is exemplified for the screening of entire binding
potentials with reasonable accuracy. Finally, we discuss new constraints for the identification of non-linear
coupling potentials for which the energy’s Hellmann-Feynman derivative will yield accurate predictions.

Keywords: Alchemical coupling · Computational chemistry · Density functional theory · Potential energy
surface · Theorectical chemistry

1. Introduction

Ever since the introduction ofHess’ law
and Carnot’s cycle, chemists have known
that certain properties, called state func-
tions, always change by the same amount
when a system is moved reversibly from
one state to another – regardless of how
the change has been implemented. The
freedom to choose any path, even paths
without any realistic correspondence ex-
cept for the endpoints, is exploited within
many applications. We generally refer to
‘alchemical’ paths as paths that cannot be
followed and verified through experimen-
tal observations. For example, Fig. 1(a) il-
lustrates how, according to Hess’ law, the
change in enthalpy of reaction can be cal-
culated either by following the (realistic)
reaction path, or, just as well, by following
a more convenient yet non-realistic (al-

chemical) reaction path to product via dis-
sembled elemental states as intermediates.
Depending on the choice of state function,

external conditions, system, and process,
realistic reaction paths can be very chal-
lenging because they can involve many in-
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Fig. 1. Alchemical cartoons. (a) The same enthalpy change, ∆h, is ob-
tained for a realistic (solid) or an alchemical (dashed) coupling between
initial (i) and final (f) states as a function of reaction progress ξ.
(b) Alchemical paths connecting compounds on two two-dimensional
binding potential energy surfaces corresponding to two different stoichi-
ometries, {ZI} (white) and {ZJ} (gray), respectively. Having calculated Eb

for some initial system i (filled circle), alchemical paths couple to energies
(open circle) of different geometries f with same stoichiometry (dotted),
different stoichiometries with same geometry f' (solid), or different geom-
etries and stoichiometries f'' (dashed).
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also estimate the change in free energy of
solvation due to changing the solute using
perturbation theory and MC simulation.
Specifically, they considered the effect on
the free energy of hydration due to an al-
chemical change of a methyl into hydroxy-
group, OH3CH3CH3CH== GGGGG if −−Δ .
One can show that if the sampling of the
two states, H

i
and H

f
, yields sufficient

overlap, the corresponding free energy dif-
ference can be accurately predicted using
perturbation theory,

(3).
)(

i

iHfHG ee
−Δ− ≈

ββ

Here, 1/β = k
B
T, and the right-hand-side

refers to the average of the Hamiltonian
difference Boltzmann’s weight over a
trajectory generated using H

i
. The au-

thors used a linear interpolation of force
field parameters for methanol and eth-
ane, )(=)( OH3CH3CH3CHOH3CH HHHH −−λλ ,
from which the energy can be calculated
for any λ.

As such, alchemical changes enable the
prediction of changes in free energy dif-
ferences without having to actually model
the realistic process under investigation.
Linear interpolation approaches have been
applied to free energy calculations in vari-
ous chemical and biological systems.[17–20]
Smith and van Gunsteren found that non-
linear alchemical coupling does not neces-
sarily lead to linear free energy changes.[21]
Further applications of alchemical cou-
pling to the estimation of free energy
difference include the free energy of hy-
dration of ions using ab initio molecular
dynamics,[22] differences in free energy of
binding between various host–guest com-
plexes,[23] free energy differences at phase
boundaries to predict melting points,[24,25]
the free energy of mixing to identify eutec-
tics in ternary mixtures of molten alkali-
nitrate salts,[26] kinetic isotope effects,[27]
as well as constraints on the composition
of the Earth’s core.[28]

But also from the solid state point of
view the concept of alchemical coupling
can be used for the prediction of properties
of disordered materials, such as co-crys-
tals, solid solutions, or solid mixtures, as a
function of mole-fraction.[29] It is compu-
tationally difficult to deal with such mixed
disordered systems since the minimal self-
repeating units can become very large. As
a result it is nearly impossible to set up dis-
ordered systems within periodic boundary
conditions. One alternative consists of us-
ing cluster-expansion methods.[30]Another
alternative, akin to alchemical coupling, is
the virtual crystal approximation (VCA)[31]
which averages the system, rather than
explicitly representing it. One of the sim-
plest disordered class of materials are ter-

termediate and transition states which are
difficult to identify and characterize. Even
worse, they might be experimentally im-
possible to probe, as it is the case for the
chemistry of the earth’s core, some other
planet’s bio-sphere, for distant historical or
future events, or for very slow or very fast
processes.

Within the atomistic theories of quan-
tum and statistical mechanics, any path
connecting the Hamiltonian of some ini-
tial molecule or material system, H

i
, to

some final system H
f
, can be defined in a

coupling order parameter λ as long as the
end-points are met,[1–3] i.e.

(1)
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where 0≤λ≤1. Hλ in Eqn. (1) denotes some
intermediate state at λ, not necessarily dif-
ferentiable. At boundaries of first order
phase transitions, for example, the entropy
(state function) is not continuous in tem-
perature (λ). Often, H(λ) is (arbitrarily)
chosen to be linear in λ, i.e. H(λ) = H

i
+

λ(H
f
– H

i
). Thermodynamics textbook ex-

amples of such changes include the cal-
culation of the errors made when relying
on the ideal gas equation. Introduced as
‘computational alchemy’[2,3] in the realm
of computational chemistry, this concept
has successfully been used for the interpo-
lation of forces and energies for molecular
dynamics (MD) and Monte Carlo (MC)
simulations. Also for the purpose of quan-
tum mechanical observables, we can de-
note any such unrealistic path as ‘alchemi-
cal’.[4–6] We note however that Eqn. (1) is
also known as ‘mutation path’ or ‘adiabatic
connection’.[7–9]

An even more intriguing possibility
for exploiting the freedom of alchemical
changes relates to the challenge of ratio-
nal compound design (RCD). RCD at-
tempts to circumvent (or at least reduce)
the combinatorially scaling challenge of
having to virtually enumerate and screen
larger subsections of chemical or materials
compound space using computationally
demanding simulation methods. Bottom
up approaches to RCD have already been
shown to yield promising results for the
atomistic control of material, nanopar-
ticle, and even molecular structures.[10,11]
Because of the vastness of chemical com-
pound space (CCS), the virtual identifica-
tion of novel compounds that meet desired
property requirements still remains a chal-
lenge.[5,12] Once an alchemical interpolat-
ing path, H(λ), is defined, property deriva-
tives with respect to λ can be evaluated[13]
(see Section 4). Similar to an iterative
gradient descent-like algorithm, one could

thus navigate gigantic combinatorial com-
pound libraries at dramatically reduced
computational costs by only visiting the
most promising compounds, one after the
other, while avoiding the least promising
candidates.[14,15]

The concept of connecting different
systems via Eqn. (1) has been in frequent
use in various research fields, includ-
ing computational engineering, physics,
biophysics, and chemistry. Here, we first
briefly summarize the most common ap-
plication of Eqn. (1) to calculate free en-
ergy changes, or alloy formation energies
in Section 2. In Section 3 we review the
quantummechanical treatment of alchemi-
cal changes. To this end, we mainly rely on
the use of density functional theory (DFT)
even though analogous arguments can be
made using conventional wave-function
based quantum chemistry methods. In
Section 4 we present numerical results that
demonstrate the use of alchemical deriva-
tives for screening entire potential energy
binding surfaces with semi-quantitative
accuracy and without additional self-con-
sistent field calculations.

2. Common Alchemical
Applications

Free energy is one of the most impor-
tant state functions in chemistry. Since it
is a statistical average, large numbers of
configurations need to be taken into ac-
count to yield accurate predictions.[16]
For example, calculating a free energy
of solvation following a path that mimics
the realistic complex process of revers-
ible microscopic immersion of the solute
into a condensed ensemble of a very large
number of solvent molecules would imply
a severe simulation effort to ensure that
all relevant degrees of freedom have suf-
ficiently been sampled. Furthermore, to
account for hysteresis effects, this simula-
tion should be repeated for various initial
conditions and immersion rates. And one
would have to start anew for any changes
made to temperature, pressure, or solvent
and solute species.Alternatively, one could
also calculate the change in free energy
with respect to some solute for which the
free energy of solvation is already known.
Thermodynamic integration, i.e. numeri-
cal integration of the statistical mechanical
average of the ‘alchemical force’ along the
path converting known solute (λ = 0) into
query solute (λ = 1),[3] yields

(2).)(=
1

0
λλ

λ
λ

∂

∂
Δ ∫

HdG

Jorgensen and Ravimohan[7] proposed an
even more efficient alternative: One can
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The numerical calculation of ε for variable
λ has been carried out using interpolated
pseudopotentials within plane-wave basis
set PBE DFT calculations, in analogy to
previous studies.[5,13,14] See Section 7 for
more details.

In Fig. 2(a), the λ-dependence of ε is
shown for various distances between the
two atomic sites, d = |R|. Clearly, while
alchemical paths for small d yield simple
parabolic shapes of ε, for teleportation
involving larger interatomic distances ε
develops into a double hill. ε versus d is
plotted in Fig. 2(b) for various λ values.
We note that for λ = 0.5 (magenta), the d
dependency of ε corresponds to the case of
stretching H

2
. ε increases monotonically at

λ = 0.1 and λ = 0.2 as d increases. For these
λ values, the buildup of integrated electron
density at the R, is still negligible, Fig.
2(c). Overall, the effect of nuclear poten-
tial in Eqn. (6),

|| Rr −i
2λ ,

amounts to a static electric field, which ap-
pears to induce a Stark effect.[46–48] Since
the electric field decreases according to
Coulomb’s law, ε rises as a result of decreas-
ing electric field perturbation. Apart from
the delocalization error of DFT,[49,50] such
nonlinear behavior could also be related to
the instability of H

2
+-like systems, which

has been shown analytically.[51] Hogreve
pointed out that the strongly polarized elec-
tron density of an asymmetric H

2
+-like mol-

ecule severely destabilizes the system.[52]
While the additional electron stabilizes our
system, nonlinear behavior can be expected
for ε in the case of strongly polarized den-
sity, i.e. for λ > 0.3. Fig. 2(c) displays inte-
grated electron density slices, ∆(z) = ∫ dxdy
n(x,y,z), for various λ values at interatomic
distance, d = 5 Å. Note that for λ = 0.5, the
electron density distribution corresponds
to H

2
. The non-linear dependency of elec-

tron density n on linearly changing growth
of nuclear charge can be seen in Fig. 2(d)
for the abrupt changes in electron density
response induced by going from λ ≈ 0.2 to
λ ≈ 0.3. To investigate the impact of param-
eterized exchange correlation potentials in
DFT, Cohen and Mori-Sánchez calculated
similar changes for N

e
=1 and N

e
= 2 us-

ing the hydrogen atom plus one additional
atomic site where a nuclear charge is grown,
i.e. Z(λ) with Z(λ = 0) = 0, Z(λ = 0.5) = 1
(H), and Z(λ = 1) = 2 (He).[53]

4. Rational Compound Design

4.1 Motivation
The goal of RCD corresponds to

solving the inverse question, i.e. “which
compounds exhibit a set of pre-defined
desired properties?”, at a rate that is su-
perior to mere screening.[5,54–57] Various

nary semiconductors, A
x
B

1-x
C, where AC

and BC are two different semiconductors
while x is the mole-fraction betweenA and
C. Consider, for example,[32] Eqn. (1) ap-
plied to AlGaAs; Al

x
Ga

1–x
As: H(x) = H

GaAs
+ x(H

AlAs
– H

GaAs
). The linear interpolated

alchemical path describes an averaged
Hamiltonian between AlAs and GaAs for
any mole-fraction of Al and Ga.

3. Alchemy in Quantum Mechanics

3.1 Fictitious Systems
Within a first principles notion of

CCS,[12] one can view every compound in
any geometry as a micro-state described by
a unique electronic Hamiltonian H. More
specifically, the total potential energy’s
molecular Hamiltonian, H, is a function of
a given set of nuclear coordinates, charges,
and number of electrons, {R

I
, Z

I
, N

e
}, re-

spectively. Without any loss of generality,
we here rely on the Born-Oppenheimer ap-
proximation, neglecting all non-adiabatic
electronic, relativistic or nuclear quantum
effects. Studies of alchemical paths have
historically provided essential insight into
the density functional theory (DFT) for-
mulation of the many-electron problem in
molecules.[33,34] In 1974, Harris and Jones
introduced an adiabatic connection,[35]
coupling the system of interest to a ficti-
tious yet relevant system of non-interact-
ing electrons,

H(λ) = T + λV
ee
+ V

ext
, (4)

where T, V
ee
, and V

ext
represent the kinetic

energy, electron–electron interaction en-
ergy, and external potential energy opera-
tors. By changing λ, one can dial in the
electron–electron interaction. For λ = 0,
the electronic Schrödinger equation can
be solved analytically, providing use-
ful information on properties such as the
exchange-correlation hole,[36–38] an impor-
tant ingredient for current exchange-corre-
lation potential development efforts.[39–42]
Another important study of electron–
electron interaction, carried out by Seidl,
Perdew and Levy, introduces the limit of
strictly correlated electrons.[43]

E. B. Wilson introduced the idea to
alchemically couple any system to the
uniform electron gas. Based on this path,
he derived an expression for an exact
four-dimensional density functional theo-
ry, integrating over three spatial and one
λ-dimension.[37,44] Subsequently, Politzer
and Parr[45] showed that, by defining free-
atom screening functions, Wilson’s func-
tional can be decomposed into kinetic and
potential energy of N

e
electrons. These

definitions of DFT related alchemical

paths constitute the underlying framework
for the results and discussions presented in
what follows.

Within ground-state DFT,[33] we can
easily calculate E(λ) for any iso-electronic
change of geometry and composition, i.e.
under the constraint that ∫ dr nλ(r) = Ne

∀
0 ≤ λ ≤ 1,

(5)

Here, the coupling is introduced explic-
itly and exclusively through the external
potential. In practice, such coupling can be
realized by scaling up or down the pseudo-
potentials or nuclear charges of initial and
final molecules at their distinct clamped
geometries. Note that kinetic and potential
energy terms are only implicitly dependent
on λ, namely through the electron density’s
dependency on the λ-dependent external
potential – which is imposed through ap-
plication of the variational principle.

3.2 Alchemical Teleportation of an
Atom

To illustrate the idea of alchemical
changes within quantum chemistry, we
now consider a process which is trivial
when done through a realistic path, and
non-trivial when done alchemically: The
‘teleportation’ of an atom from one site to
another with the constraint that the total
number of electrons and protons is kept
constant. Thus, instead of the trivial real
space displacement of the atom, we con-
tinuously decrease the nuclear charge (an-
nihilation) at one site while continuously
increasing (creation) the nuclear charge at
the other site by the same amount. For ex-
ample, the external potentials of an atom at
two sites can be linearly coupled through
an alchemical path,

(6)

where the respective atomic sites are locat-
ed at the origin and at R. Considering only
the endpoints (λ = (0,1)), the location of
the atom obviously shifted from origin to
R. For any intermediate value of λ, howev-
er, the electrons will distribute among the
two competing poles of the external poten-
tial given in Eqn. (6), forming an attractive
chemical bond.

To numerically exemplify this process,
we have chosen the highest occupied mo-
lecular orbital (HOMO) eigenvalue, ε, as
property of interest, and an alchemical
change corresponding to the linear tele-
portation of a Z = 2 and N

e
= 2 system,

i.e. effectively translating the He atom.
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approaches tackle this problem, includ-
ing the inverse spectrum approach,[58]
linear combination of atomic poten-
tials,[59,60] and many others.[56,61–63]
For the electronic potential energy, an
alchemical path coupling E(λ = 0) of
one molecule to an unknown E(λ = 1)
of another compound makes explicit the
compositional dependence of the energy.
Understanding such a dependence holds
promise to dramatically reduce the com-
putational burden of having to stubbornly
screen one compound after the other. More
specifically, we can expand E in λ in terms
of a Taylor series,

(7)E(λ) = Ei + λ∂λEi +
λ2

2
∂2

λ
Ei + · · · ,

where the subscript of E
i
represents the

quantum mechanical expectation value of
H

i
. In other words, if all derivatives of E

i
were available one could simply follow a
steepest descent procedure to screen a set
of coupled ‘neighboring’ molecules, e.g.
with small differences in geometry or stoi-
chiometry, to identify and proceed to more
promising compound candidates. Fig. 1(b)
illustrates the exploration of CCS follow-
ing such alchemical predictions. Ideally,
only a single calculation of the electronic
ground-stateE

i
would be required (denoted

by black circle). The energy of neighbor-
ing compounds (denoted by white circles)

can then be estimated via Eqn. (8). As we
discuss below, it is possible to make such
scans through changes in geometry as well
as composition.

In Ref. [13] we already discussed
that for any iso-electronic alchemical
change, the first order derivative is sim-
ply the Hellmann-Feynman derivative.[64]
Consequently, differentiation of Eqn. (5)
yields,

(8)
∂λE[nλ, λ] = �∂λH�

λ

=

�
dr nλ(r) ∂λvext(r, λ),

which is the same as the first order per-
turbation term.[46] Higher order derivatives
can be evaluated or approximated by lin-
ear response theory,[65–67] and will be dis-
cussed below in the context of linearizing
the energy in λ in Section 4.4.

4.2 Alchemical Changes in
Geometry

We now consider alchemical changes
that only involve teleportation. To dem-
onstrate the versatility and transferability
of the discussed approach, we have cal-
culated alchemical predictions of changes
in binding energy for two very different
modes of binding: The covalent inter-
atomic potential in hydrogen fluoride,
as well as the hydrogen-bond-dominated
van der Waals potential of the water di-
mer. In both cases the binding energy is

given as the difference in potential energy
of dimer (dim) and (relaxed) monomers
m1 and m2, E

b
(d) = E

dim
(d) – E

m1
– E

m2
.

Any approximate solution of the elec-
tronic Schrödinger equation at some ini-
tial distance d

i
enables us to estimate the

binding energy of any other d using the
Hellmann-Feynman derivative and first
order Taylor expansion in the alchemical
teleportation path (Eqns. (8,7)),

(9))(1Tb dE)(b dE ≈ ).()(= ibib dEdE λ∂+

Considering now the case of d
i
corre-

sponding to the equilibrium distance, d
eq
,

the insets of the two top panels in Fig. 3
show the resulting scatter plots of )(1 dETb
versus the actualE

b
(d) for various values of

d in the case of HF and (H
2
O)

2
.While there

is clear correlation, the scale differs dra-
matically for the two modes of binding.
Most importantly, in the case of the disso-
ciative tail ET1 correlates practically lin-
early with the actual binding energy.
Consequently, if we now approximate the
true rl

T
brl

p
bb bEaEE /

1
/= +≈ , (l and r corre-

spond to the left-hand repulsive wall and
the right-hand attractive tail, respectively)
one can solve for the coefficients a and b if
further constraints are known. Since this is
a rather exploratory study, we here simply
assume that (i) )(=)=( 1

eq
T
beqb dEddE , and

(ii)E
b
(d→ ∞) = 0 in the dissociative region

of the curve, and (iii) in the case of the
repulsive region that 0=)

3
2=( eqb ddE 3
2

for covalent binding, and
0=)

6
5=( eqb ddE 6
5 for intermolecular bind-

ing. Assumption (iii) is based on experi-
ence using typical Morse and Lennard-
Jones parameters, respectively. All result-
ing coefficients {a

l/r
,b

l/r
} are specified in

Ref. [68]. The predictions for scanning the
entire binding potential agree reasonably
well with the true binding potentials, and
are shown together for both systems in the
top panels in Fig. 3. Integrated deviations
of these predictions are also shown inTable
1, yielding single digit percentage error for
predicting the integral over the covalent
bonding potential of hydrogen fluoride,
and ∼14% error for the integral over the
van derWaals potential of the water dimer.
We stress that the entire screen using this
model only requires a single self-consis-
tent field cycle to calculate energy and de-
rivatives at d = d

eq
.

4.3 Alchemical Changes in
Stoichiometry

We now extend the use of Eqn. (9) to
also make predictions not only for tele-
portation changes in geometry but also for
transmutational changes in stoichiometry.
In particular, we have calculated predic-
tions for changing hydrogen fluoride into
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Fig. 2. Alchemical transportation of a He atom. (a) ε as a function of λ for four distances d ∈
{1,2,4,7}Å denoted by solid, dashed, dash-dotted, dotted lines, respectively. (b) ε as a function of
d. (c) Integrated electron density, ∆(z) = ∫ dxdy nλ(x,y,z) for various λ at d = 5 Å aligned with z. The
electronic cusps at the nuclear sites have been highlighted by their corresponding λ symbols.
(d) Integrated response of electron density due to changing λ, d∆(z) = ∫ dxdy ∂λnλ(x,y,z) for various
λ at d = 5 Å aligned with z.
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hydrogen chloride at various interatomic
distances, as well as changing the water
dimer into the water–hydrogen fluoride
complex. Since we use pseudopotentials
for both of these changes the total number
of valence-electrons in our calculations
does not change. To calculate 1T

bE accord-
ing to Eqn. (9) we have chosen d

eq
to cor-

respond to the equilibrium distance of the
target system, i.e.HCl and H

2
O-HF.Again,

the same assumptions (i)–(iii) as above
are used to calculate a

l/r
and b

l/r
to obtain

a linear approximation of the actual E
b
(d)

in 1T
bE . Also for these changes, the result-

ing coefficients are specified in Ref. [68].
The predicted binding curves show reason-
able agreement with the actual numbers,
as shown for both systems in the bottom

panels in Fig. 3.Again, integrated and rela-
tive errors are given in Table 1, and show
a reasonable albeit slightly worse perfor-
mance than in the case of predicting the
water dimer or the hydrogen fluoride. We
reiterate, however, that the entire screen
results from only one self-consistent field
cycle carried out to calculate energy and
derivative of anothermolecular system – at
the d

eq
of the target system.While it is also

possible to use other d to calculate energies
and derivatives this typically leads to less
accurate predictions. We do not think that
this constitutes a problem since knowledge
about equilibrium distances of target struc-
tures can easily be obtained from literature
or through inexpensive force-field or semi-
empirical quantum chemistry calculations

which incur negligible computational
overhead.

4.4 Linearizing Chemical Space
As we have seen above for the telepor-

tation of the He atom, as well as in other
studies,[12,13] there are cases when the first
order Taylor expansion of Eqn. (9) does not
provide satisfactory predictive power. This
is not surprising since changes in compo-
sition correspond to large perturbations
that typically lead to non-linear responses.
We believe that the good performance ob-
tained above for the binding curves is due
to cancellation of higher order effects and
due to the calibration of the linear model
to the appropriate physical dissociation or
repulsion limits. One way to systemati-
cally improve the predictive accuracy con-
sists of including increasingly higher-order
terms. Sebastiani and coworkers[67,69,70]
as well as Geerlings, De Proft and oth-
ers[71–73] proposed promising approaches
in this direction. For example, akin to our
discussion above, Benoit, Sebastiani and
Parrinello investigated the performance
of second order linear response theory for
screening the potential energy surface of
the water dimer, and achieved very high
predictive power.[74] How to efficiently
calculate susceptibility accurately and in
general, however, is still a matter of cur-
rent research. Furthermore, typically one
observes a (sometimes dramatic) increase
in computational cost due to λ-dependent
susceptibilities, thereby defying the origi-
nal motivation of RCD to navigate CCS
without having to solve Schrödinger’s
equation from scratch for each and every
new geometry or molecule. As pointed out
in Ref. [13], a promising alternative route
towards improving the predictive power of
the first order derivative consists of deviat-
ing from the assumption that the alchemi-
cal coupling must be linear in λ. In fact,
as already mentioned above in the context
of interpolating force-fields,[21] we are
free to use any kind of coupling as long as
we meet our endpoints, i.e. comply with
Eqn. (1). More specifically, if we knew the
form of some coupling external potential
v
ext
(r,λ) that induces such changes in the

electron density that E(λ) becomes linear
in λ, then Eqn. (9) would result in perfect
predictions. The quest for such a potential
has been discussed in Ref. [12], in par-
ticular in connection to a 1-ounce-of-gold
prize for anyone who provides a practical
solution to this problem.

For a coupling path to generally fulfill
the requirement that E(λ) becomes linear
in λ we note that the potential must have
such a shape that the first order derivative,
∂λE is a constant (as already pointed out
and used in ref. [13]), and that furthermore,
all higher order energy derivatives must be
zero. Consequently,

Table 1. Numerical integrals of reference energies Eb (REF) and of absolute deviation of
alchemical predictions Eb

p from reference energies Eb (PRE-REF) over the entire binding region,
i.e. for all d where Eb < 0, and percentage thereof (%) for the repulsive wall predictions as well
as for the attractive tail. Columns correspond to (a) HF, (b) (H2O)2, (c) HCl, and (d) H2O-HF on
display in Fig. 3.

Integral [eV×Å] (a) (b) (c) (d)

REF[eV×Å] (wall)
PRE-REF[eV×Å] (wall)
% (wall)

–2.542
0.150
5.9

–0.059
0.009
15.6

–3.054
0.656
21.5

–0.095
0.036
37.6

REF [eV×Å] (tail)
PRE-REF [eV×Å] (tail)
% (tail)

–8.199
0.692
8.4

–0.275
0.031
11.4

–6.017
0.239
4.0

–0.594
0.072
12.1
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Fig. 3. Actual (black lines) and alchemical (blue squares) binding energy Eb of repulsive (filled) and
attractive (empty) regions of binding potentials for HF (a), (H2O)2 (b), HCl (c), and H2O-HF (d). Each
screen corresponds to using only one self-consistent field (SCF) calculation at di = deq, together
with the first order Taylor-expansion based model, rl

T
brl

p
b bEaE /

1
/= + (Eqn. (7)). Insets in (a) and

(b) show Eb versus
1T

bE . The screens in (c) and (d) are slightly less predictive because they are
made using SCF results from HF and (H2O)2, respectively. deq is set to 1, 2.8, 1.4 and 2.8 Å for (a),
(b), (c), and (d) respectively.
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(10)

∀m > 1. This imposes certain constraints
on the interpolating potential. For exam-
ple, in the case of the second order deriva-
tive, equating the integrand to zero and
solving for the electron density’s response
results in

(11)

Similar expressions can be obtained for
higher order density response functions.
Possibly, Eqn. (10) could be transformed
into a variational problem that yields an
interpolating potential with the desired ef-
fect that the associated energies are indeed
linear in λ.

5. Conclusions

We discussed recent theoretical devel-
opments and approaches based on cou-
pling states using unrealistic ‘alchemical’
paths. Numerical evidence has been pre-
sented for the applicability and versatility
of alchemical approaches applied to the in-
expensive prediction of quantum mechani-
cal observables of novel systems. The de-
rivative based predictions certainly reflect
the qualitative trend of the desired binding
potentials, and are within single, or low
double, digit percentage accuracy. Results,
discussions, and current state of the field
indicate that the study of generalized cou-
pling approaches still holds great promise
for the predictive simulation of molecular
and materials properties, as well as for ra-
tional compound design.

6. Computational Details

All calculations have been carried out
using Kohn-Sham DFT[75] as implemented
in CPMD[76] with PBE (He teletransporta-
tion) or PBE0 (all other calculations) func-
tional.[40,77] Goedecker pseudopoten-
tials[78–80] have been used as published by
Krack,[81] in conjunction with 100 Ry
plane-wave cutoffs in isolated 30 × 15 × 15
Å3 box for He, 20 × 20 × 20Å3 for HF→HF
andHF→HCl, and 110 Ry plane-wave cut-
off with isolated 25 × 15 × 15 Å3 box for
H

2
O→H

2
O and H

2
O→HF. Alchemical

coupling has been imposed through linear
interpolation of corresponding pseudopo-
tential parameters,[5,13,14] σ(λ) = σ

i
+ λ(σ

f
– σ

i
), where σ

i
and σ

f
represent the param-

eters for atoms in H
i
and H

f
respectively.

HOMO eigenvalues ε have been calculated

as a finite difference relying on Jana‘k and
Koopman’s theorem,[82,83]

δ
ε δ NN EE −
≈ +

where δ is 1% of a positive
unit charge. The geometry scans of HF and
HCl have been performed by fixing the
heavy atoms at origin, movingH in d direc-
tion, while aligning the HF or HCl bond
along z-axis. In the case of the (H

2
O)

2
scan,

equilibrium geometry has been taken from
S66 data base,[84] setting the oxygen of the
H-acceptor at the origin, while aligning the
O-H bond of the H-donor with the z-axis.
The H

2
O-HF geometry scans have been

performed by replacing the oxygen of the
H-donor by F and annihilating the other
hydrogen while keeping the HF bond
aligned with the z-axis.
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