

Gold-Catalyzed Regioselective Synthesis of 2- and 3-Alkynyl Furans

Y. Li, J. P. Brand, and J. Waser*, *Angew. Chem. Int. Ed.* **2013**, *52*, 6743. EPF Lausanne

Furan rings are a common structural motif found in many functional organic materials, bioactive compounds and natural products. In this communication, Waser and co-workers outline a selective and efficient access to C(2)- or C(3)-alkynylated furans using gold catalysis. Direct C–H alkynylation at C(2) was achieved using hypervalent TIPS-ethynylbenziodoxolone in combination with a Au¹ catalyst. For the C(3)-selective variation, a modification of the ethynyl reagent was required. Replacement of the carbonyl- by two trifluoromethyl groups enabled a domino cyclization/alkynylation process, relying on allenes as starting material in combination with a Au^{III} precursor. The broad substrate scope, good yields and mild conditions open fascinating perspectives for this novel methodology.

Isomerization of Terminal Epoxides by a [Pd–H] Catalyst: A Combined Experimental and Theoretical Mechanistic Study

D. J. Vyas, E. Larionov, C. Besnard, L. Guénée, and C. Mazet*, *J. Am. Chem. Soc.* **2013**, *135*, 6177. University of Geneva Mazet and coworkers report on an original method for the preparation of carbonyl compounds by isomerization of epoxides. For this purpose, a well-defined palladium hydride catalyst was developed. A broad variety of epoxides, including several nonterminal ones, were isomerized to the corresponding ketones and aldehydes in fair to good yields. Mechanistic insight provided by experimental- and computational studies suggests that the reac-

tion proceeds *via* two distinct enantiodetermining steps: opening of the epoxide and hydride transfer to the cationic intermediate. This strategy shows promise for the development of an asymmetric variant of this reaction.

Peptide-Catalyzed Stereoselective Conjugate Addition Reactions Generating All-Carbon Quaternary Stereogenic Centers

R. Kastl and H. Wennemers*, Angew. Chem. Int. Ed. 2013, 28, 7228. ETH Zürich

All carbon, enantiopure quaternary stereocenters remain a synthetic challenge. To address this, Wennemers and co-workers report on a new method for conjugate addition reactions of aldehydes to β , β -disubstituted nitroolefins. The procedure, which relies on a peptide-based organocatalyst, gives a straightforward access to γ -nitroaldehydes bearing a quarternary all-carbon center. These synthetically versatile intermediates can be further elaborated into high-added value products including pyrrolidines, γ -amino acids and γ -butyrolactones.

Ultrafast Solvent-Assisted Electronic Level Crossing in 1-Naphthol

F. Messina, M. Prémont-Schwarz, O. Braem, D. Xiao, V. S. Batista, E. T. J. Nibbering, and M. Chergui*, *Angew. Chem. Int. Ed.* **2013**, *52*, 6871. EPF Lausanne

Photoabsorption by large molecules can trigger a sequence of events where electronic excited states change *via* so-called, non-adiabatic transitions, en route to either the ground state or to photoproduct states. Using ultrafast anisotropy fluorescence measurements, Chergui and co-workers determined the time

scale for ultrafast electronic excited state level crossing in a classical case: the solvent-driven level crossing in 1-naphthol. This level crossing has been postulated as the mechanism for the much higher photoacidity of 1-naphthol compared to other photoacids. They found that the level crossing is mediated by H-bonds between one of the excited states and the solvent molecules.

Prepared by

Nico Bruns, Patrick Burch, Valentin Köhler, Raphael Reuter, Mariana Spulber, Paolo Tosatti, Adrian von der Höh and Thomas R. Ward **Do you want your article to appear in this SWISS SCIENCE CONCENTRATES highlight?** Please contact thomas.ward@unibas.ch