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Thiohistidine Biosynthesis
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Abstract: Ergothioneine and ovothiol A are sulfur-containing histidine derivatives produced by microorganisms
includingMycobacterium tuberculosis, Trypanosoma cruzi orErwinia amylovora andmay also play important roles
in humanphysiology.Basedonour recent identificationof thiohistidinebiosynthetic enzymes fromMycobacterium
smegmatis and Erwinia tasmaniensis we investigate several aspects of sulfur-based redox biochemistry. For
example, we are characterizing the catalytic mechanism of two thiohistidine biosynthetic enzymes which afford
O2-dependent sulfur insertion into the C(5)–H and C(2)–H bonds of the imidazolyl side chain of histidine.

Keywords: Biosynthesis · Ergothioneine · Ovothiol · Oxidative stress

Florian P. Seebeck received his Diploma
in Chemistry from the University of Bern,
and a PhD from the ETH in Zürich. He
worked as a postdoc at the Massachusetts
General Hospital in Boston between
2005 and 2007 and in 2008 he became a
group leader at the Max Planck Institute
of Molecular Physiology in Dortmund.
In 2011 he moved to Basel to assume
the ‘Stiftungsprofessur für Molecular
Bionics’.

Cellular Redox Chemistry as a
Research Focus

Molecular oxygen (O
2
) is the common

terminal electron acceptor in aerobic life.
In its ground state O

2
is unreactive towards

most organic molecules. Consequently, bi-
ological O

2
dependent oxidations require

catalysis by transition metal or flavin de-
pendent enzymes. In contrast, partially
reduced oxygen species such as the hydro-
peroxyl radical (O

2
+ 1 electron + 1 pro-

ton), hydrogen peroxide (O
2
+ 2 electrons

+ 2 protons) or the hydroxyl radical (O
2

+ 3 electrons + 2 protons) attack cellular
components without the need for cataly-
sis causing unspecific oxidation of vital
biomolecules such as proteins and nucleic
acids. The presence of 20% O

2
in the at-

mosphere and the many cellular processes
which produce partially reducedO

2
species

sets the cell under a constant pressure to
repair and prevent oxidative damage. This
oxidative stress is an important factor in
causing cancer, cardiovascular, inflamma-
tory, neurodegenerative, infective disease
and – although this is not a disease – aging.
As a result cellular redox biochemistry has
emerged as a major research focus.

Sulfur is a Mayor Player in Cellular
Redox Biochemistry

Much of oxidative stress is mediated,
communicated, mitigated or amplified by
a complex intracellular system of sulfur-
containing proteins and small molecules.
Reversible oxidations of specific cysteine
and methionine residues on signaling pro-
teins or enzymes allow the cell to detect
reactive oxygen species[1–3] and to catalyze
their reductive destruction. Small sulfur-
containing metabolites on the other hand
are found as messenger,[4] as pathogenic-
ity factors,[5] as antibacterials[6] or as redox
buffers.[7,8] For example, human cells con-
tain millimolar concentrations of glutathi-
one (1, Fig. 1), a tripeptide consisting of

glutamic acid, cysteine and glycine. Many
microorganisms depend on similar cyste-
ine derivatives such as bacillithiol (2),[9]
mycothiol (3)[10] or trypoanothione (4).[8]

The purpose of high cellular concen-
tration of such thiols is to keep protein-
based cysteine residues in reduced form,
to trap electrophilic toxins, and to assist
the trafficking of transition metals across
the cell. The role of glutathione in neutral-
izing reactive oxygen species and O-, C-
or N-based radicals is less clear: at physi-
ological pH glutathione is predominantly
protonated and does not react efficiently
with peroxides. Reduction of oxygen su-
peroxide and other radicals generate the
glutathionyl radical which is almost as re-
active as the parent radical and still poses a
threat to proteins and nucleic acids. These
shortcomings point to functional niches
for alternative antioxidants with distinct
chemical properties from the cysteine de-
rivatives 1–4. The research in our group is
based on the hypothesis that ergothioneine
(5, Fig. 1) and ovothiol A (6) represent
such complementary thiols. To test this hy-
pothesis we study the biosynthesis of thio-
histidines and investigate which organisms
depend on thiohistidines and under which
circumstances.

Fig. 1. Structures of
the cysteine deriva-
tives glutathione (1),
bacillithiol isolated
from Bacillus species
(2),[9] mycothiol from
mycobacteria (3),[10]

trypanothione from
trypanosoma (4).[8]

The cysteine portions
are indicated in red.
The thiohistidine de-
rivatives ergothione-
ine (5)[11] and ovothiol
A (6).[12]
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S-adenosyl methionine (SAM)-dependent
methyltransferase, an iron(ii)-dependent
oxidase, and a pyridoxal 5-phosphate
(PLP)-dependent β-lyase as possible cata-
lysts. An analogous study with cell-free
extracts from Crithidia fasciculata (a ki-
netoplastid), suggested that ovothiolA bio-
synthesis proceeds in a similar manner via
a 5-histidinyl cysteine sulfoxide intermedi-
ate (10, Scheme 1).[30]Whenwe started our
own research in this field, none of the pro-
posed thiohistidine biosynthetic enzymes
were known.

Gene Identification

We were intrigued by the mysterious
reaction which affords sulfurization of his-
tidine either at the imidazole C(2) or C(5)
position. Because this reaction appeared to
be iron(ii) and O

2
dependent it was clear

that thiohistidine biosynthesis entailed
unprecedented enzymatic activity. The
wealth of sequenced microbial genomes
and the availability of user friendly bio-
informatics tools (www.ncbi.nlm.nih.gov/
pubmed/) enabled our non-expert fishing
expedition to identify the genes involved.
Briefly, we searched for a methyltransfer-
ase (EgtD, Scheme 1) gene which occurs
in bona fide ergothioneine producers such
asMycobacterium avium and N. crassa,[35]
but not in bacteria which do not produce
ergothioneine (Fig. 2).[36] These two crite-
ria reduced a list of 78 annotated mycobac-
terial methyltransferases to ten candidate
genes (red segments, Fig. 2) one of which
is encoded next to a pyridoxal 5-phosphate
(PLP)-binding protein in the context of a
five-gene cluster. We cloned these genes
fromMycobacterium smegmatis and found
that the encoded enzymes indeed synthe-
sized ergothioneine in a test tube (Scheme
1).[32] The key reactions are catalyzed by
a histidine-specific methyltransferase

Ergothioneine Biology

In addition to their respective main in-
tracellular thiols 1 and 3, fungi and myco-
bacteria have long been known to produce
the 2-thiohistidine derivative ergothione-
ine (5, Fig. 1).[13] Although ergothioneine
is formally a thiol, physiological condi-
tions stabilize its thione form.[14] Other
than glutathione, ergothioneine does not
engage in disulfide bond formation or re-
duction, is not prone to autooxidation and
is characterized by a significantly higher
pKa (>10) of the thioimidazole group than
most alkylthiols.[14] Despite a long series
of reports on the in vitro properties of ergo-
thioneine,[14] its physiological roles remain
a matter of speculation. The most exciting
development in this field came from the
recent discovery of a human ergothioneine
transporter protein (OCTN1).[15] Specific
human tissues such as liver, kidney, cen-
tral nervous system, bone marrow, and red
blood cells assimilate ergothioneine from
dietary sources up to millimolar concen-
trations.[14] Its seems that tissue-specific
expression of the onct1 gene is respon-
sible for this non-uniform distribution of
ergothioneine. Gain-of-function mutations
of onct1 are associated with Crohn’s dis-
ease,[16] while elimination of ergothio-
neine transport activity in cultured HeLa
cells reduce resilience towards oxidative
stress.[17] Evidently, the relation between
cellular health and ergothioneine is com-
plex. Although ergothioneine research is
still in its infancy, the California-based
company OXIS (http://www.oxis.com/)
already markets ergothioneine as additive
in food products and cosmetics. Several in
vitro studies attest ergothioneine excellent
affinity for heavy metals such as copper
which loses redox activity upon ergothio-
neine complexation.[14,18] Ergothioneine is
not particularly reactive towards peroxides
or oxygen superoxide, but does react with
hydroxyl radicals, hypochlorous acid, per-
oxynitrite or singlet oxygen.[14]However, it
is not clear whether this reactivity profile
is relevant in living cells. For example, er-
gothioneine seems to protect Neurospora
crassa from peroxides despite the lack of
in vitro reactivity towards peroxides.[19]

Ovothiol A Biology

Ovothiol A (6, Fig. 1) has been dis-
covered in unfertilized eggs of sea
urchin.[12,20,21]The thiol group in ovothiolA
is characterized by a very low pK

a
(1.4)[22]

and by a much more positive redox po-
tential (–0.09 V vs. SHE) relative to that
of glutathione (–0.26V).[22] The 2- and
5-thioimidazole groups in ergothioneine
and ovothiol A have remarkably different
properties. It seems therefore possible that

the two thiohistidine isomers serve com-
pletely different biological roles. For ex-
ample, ovothiol A is a much better reduc-
ing agent for peroxides than ergothioneine
and glutathione. This reactivity is believed
to protect the DNA content of the sea ur-
chin eggs from the oxidative burst that con-
cludes the fertilization process.[7] Sporadic
reports over the last thirty years have de-
scribed ovothiol A as a redox regulator in
Dunaliella salina (a micro-algae),[23] as a
sex-pheromone in Platynereis dumerilii (a
marine worm)[24] and as building block for
various secondary metabolites from ma-
rine invertebrates.[25,26] Trypanosoma cru-
zi, Trypanosoma brucei and Leishmania
major are the human pathogens which
cause tropical diseases such as sleeping
disease, Chagas disease and leishmaniasis
also produce ovothiol A.[27–30] Elucidation
of the corresponding biosynthetic pathway
may reveal novel strategies to treat these
conditions, for which no efficient therapy
is known. Furthermore, identification of
the ovothiol A biosynthetic genes (see be-
low) revealed that several plant pathogens
such as Erwinia amylophora, the causative
agent of fire blight andPhytophthora infes-
tans which causes potato blight, are also
ovothiol A producers. At the present time,
however, it is not known whether ovothiol
A is essential for viability or pathogenicity
of any of these organisms.[31]

Thiohistidine Biosynthesis

Early biosynthetic studies in cell-free
extracts from Neurospora crassa (an asco-
mycete fungus) revealed that ergothioneine
is assembled from histidine, cysteine, and
methionine with Nα-trimethylhistidine
(7, Scheme 1) as a first, and 2-Nα-
trimethylhistidyl cysteine sulfoxide (9)
as a third intermediate.[34] These observa-
tions also implicated the involvement of an

Scheme 1. Top: Reaction sequence of ergothioneine in vitro biosynthesis catalyzed by recombi-
nant enzymes from Mycobacterium smegmatis.[32] Bottom: Reaction sequence of ovothiol A bio-
synthesis catalyzed by recombinant enzymes from Erwinia tasmaniensis.[33]
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cycle. This mechanism appears particu-
larly convincing because even aqua com-
plexes of iron(iii) generate cysteine thiyl
radicals during iron-catalyzed oxidation of
cysteine to cystine. The second step, attack
of a thiyl radical onto a carbon sp2 center,
is also observed in uncatalyzed systems,
namely in the thiol-ene reaction where
photogenerated thiyl radicals have been
shown to attack a broad range of unsatu-
rated hydrocarbons.[38]We are looking for-
ward to experimentally testing these and
other mechanistic proposals to decipher
the intriguing reactivity of the new class of
sulfoxide synthases.

In conclusion, we propose that ergothi-
oneine and ovothiol A play a fundamental
but previously underappreciated role in the
physiology of humans, human pathogens,
plant pathogens and biomass degrading
fungi and bacteria. Identification of thio-
histidine biosynthetic enzymes established
the basis to test this hypothesis, and also
revealed a novel class of iron(ii)-depen-
dent enzymes which afford unprecedented
oxidative sulfur transfers onto non-elec-
trophilic carbon scaffolds. I am convinced
that this research field will keep us busy
and excited for many years to come.
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(EgtD) and an iron(ii)-dependent sulfoxide
synthase (EgtB). The latter protein is the
first representative of an entirely new en-
zyme family. When we searched the some
2000 genome sequences in the public do-
main for EgtD and EgtB homologs it be-
came clear that ergothioneine biosynthesis
is a frequent trait found in actinobacteria,
cyanobacteria, pezizomycotina and ba-
sidiomycota, and also in numerous bacte-
roidetes, proteobacteria and firmicutes.[32]
This finding certainly graduates ergothio-
neine from a rare curiosity to an important
player in microbial redox biochemistry.

The search for EgtB homologs also led
to the identification of a second class of
sulfoxide synthases. We termed these en-
zymes OvoA because in vitro reconstitu-
tion of homologs from Erwinia tasmani-
ensis, Trypanosoma cruzi and Leishmania
mayor revealed that these catalysts medi-
ate ovothiol A biosynthesis (Scheme 1).[33]
Again, it appears that ovothiol A biosyn-
thesis is far more widespread than previ-
ously thought.[33]

Sulfoxide Synthases and their
Catalytic Mechanism

EgtB andOvoAare the central enzymes
in the biosynthetic pathway of ergothione-
ine and ovothiol A (Scheme 1).[32,33] The
unique ability of sulfoxide synthases to
insert sulfur into non-electrophilic carbon
scaffolds raises the question as to whether
such enzymes could be used for biotechno-
logical production of low molecular thiols.
However, application of OvoA and EgtB
as preparative thiolation catalysts may be
limited by a narrow substrate scope owing
to strict active site – substrate shape com-
plementarity. Secondly the catalytic mech-
anism might be highly specific for imid-
azole rings as sulfur acceptors and might
not be permissible for other hydrocarbons.
To address this question we are currently
working on four mechanistic proposals for
the OvoA- and EgtB-catalyzed reactions.

OvoA and EgtB bind iron(ii) through
the side chains of two histidine and one
glutamate residue within a seven amino
acid motif.[33] Both enzymes require O

2
as four electron acceptor to mediate C–S
bond formation and concomitant sulfoxi-
dation of the thioether bond. The first three
mechanisms (1–3, Scheme 2) predict that
sulfoxidation of the iron-coordinated sub-
strate cysteine allows the enzyme to form
a highly reactive oxo iron (iv) species (a,
Scheme 2) which then mediates C–S bond
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Fig. 2. Qualitative Venn diagram representing
all methyltransferase genes encoded by the
genomes of Mycobacterium avium, Neurospora
crassa, Escherichia coli and Bacillus subtilis
(black circles). Some methyltransferases occur
in all four genomes (central section), some are
specific for each species (peripheral sections).
An ergothioneine biosynthetic methyltrans-
ferase (EgtD, Scheme 1) has to occur in the
genomes of M. avium and N. crassa, but has
to be absent in E. coli and B. subtilis (red seg-
ment). M. avium and N. crassa share only ten
homologous methyltransferases, one of which
proved to be EgtD.

Scheme 2. Proposed
catalytic mechanisms
1–4 for OvoA cata-
lyzed oxidative sulfur
insertion into the
C(5)–H bond of the
imidazolyl side chain
of histidine.[33]
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