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Abstract: Involvement of metabotropic glutamate receptor subtype 5 (mGluR5) in physiological and
pathophysiological processes in the brain has been demonstrated, and hence mGluR5 has emerged as an
important drug target. [11C]-ABP688 is clinically themost successful mGluR5 positron emission tomography (PET)
tracer to date and it allows visualization and quantification of mGluR5. Due to the short half-life of carbon-11,
clinical use of [11C]-ABP688 is limited to facilities with an on-site cyclotron and a fluorine-18 (half-life 110 min)
analogue would be more practical. Based on the [11C]-ABP688 structural motif, a novel derivative [18F]-PSS223
was prepared and evaluated as a PET tracer for imaging of mGluR5 in vitro and in vivo. Our results show
favourable in vitro binding properties; however rapid defluorination of [18F]-PSS223 does not allow visualization
of mGluR5 in the rat brain.
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1. Introduction

The function of glutamate, a major
neurotransmitter in the mammalian brain,
is mediated through two types of recep-
tors: ionotropic (e.g. NMDA, AMPA or
kainate) and metabotropic (e.g. mGluR
receptor family). Metabotropic glutamate
receptors (mGluR) were identified in
1991 and they are divided in three groups
based on sequence homology, receptor
pharmacology and signal transduction:
group I (mGluR1 and mGluR5), group
II (mGluR2 and mGluR3), and group III
(mGluR4 and mGluR6-8).[1–8]While iono-
tropic glutamate receptors are mainly in-
volved with fast excitatory neurotransmis-
sion, mGluRs are responsible for subtle
changes in neurotransmission. mGluR5 is

a seven transmembrane domain G-protein
coupled postsynaptically situated recep-
tor. Studies have implicated mGluR5 with
processes of learning and memory, but also
involvement of mGluR5 in several disor-
ders of the central nervous system (CNS)
such as Alzheimer’s and Parkinson’s dis-
eases, schizophrenia, depression and anxi-
ety.[9–11] Although the precise mechanisms
governing the involvement of mGluR5 in
pathophysiological processes in the brain
are not fully understood, mGluR5 is con-
sidered an important drug target and imag-
ing of mGluR5 in vivo arose as a challenge
to PET community.

Positron emission tomography (PET)
is a powerful non-invasive imaging tech-
nique which is employed in the quantifica-
tion of biochemical and pharmacodynamic
processes in healthy and diseased states
and is particularly important for the drug
development as it facilitates deeper under-
standing of drug-target interactions in vivo
and monitoring of effects of drug candi-
dates on the progression of a disease.[12]
For these reasons, development of a PET
radiotracer for mGluR5 is advantageous
and several mGluR5 PET tracers have
been developed to date. Clinically the
most successful radiotracer for imaging of
mGluR5 is (E)-3-((6-methylpyridin-2-yl)
ethynyl)cyclohex-2-enone-O-11C-methyl
oxime ([11C]-ABP688),[13,14] developed
by the Ametamey group and exhibited
excellent in vitro and in vivo properties;
however the application of [11C]-ABP688

is limited to facilities with an on-site cy-
clotron due to the extremely short half-
life of carbon-11 (20 min). In order to
overcome this limitation scientific efforts
were made towards the development of an
analogous fluorine-18 radiotracer which
would have a physical half-life of 110 min.
[18F]-SP203[15–17] and [18F]-FPEB[18,19] are
two radiotracers for imaging of mGluR5
developed by the Pike and Hamill groups,
respectively; however they both have
shortcomings, first due to defluorination
in human subjects albeit in modest amount
and the latter due to tedious radiosynthesis
(Fig. 1). Efforts from theAmetamey group
were aimed at developing a fluorine-18
analogue of [11C]-ABP688 by the least
number of structural changes which led
to (E)-3-(pyridin-2-ylethynyl)cyclohex-
2-enone O-(2-(2-18F-fluoroethoxy)ethyl)
oxime ([18F]-FDEGPECO, Fig. 1).[20,21]
The main advantages of [18F]-FDEGPECO
in comparison to other fluorine-18 radio-
tracers are based on the ease with which
[18F]-FDEGPECO is produced in a single
high-yielding radiochemical step and good
stability in vivo (i.e. no defluorination was
observed in the dynamic PET scan); how-
ever although quantification of mGluR5
was possible, quality of the images was
reduced by significant background.

One of the important criteria in design-
ing new brain tracers is their lipophilic-
ity, which among other parameters deter-
mines the successful passage across the
blood brain barrier (BBB).[22] For mGluR5



202 CHIMIA 2012, 66, No. 4 Laureates: awards and Honors, sCs FaLL Meeting 2011

philic substitutions of common precursor
1 with the corresponding nucleophilic
fluoride sources (Scheme 1). The suitably
functionalized intermediate 1would be ac-
cessed via a coupling of oxime 3 and bro-
moether 2.

To form bromoether 2 the commercial-
ly available 1,3-propanediol (4) wasmono-
protected to yieldTBS silyl ether 5. Several
attempts to obtain the coupling partner 7
directly using dibromoethane failed and
a two-step approach via bromoester 6 af-
forded bromoether 7 after reduction of
the ester functionality with triethylsilane/
indium(iii)-bromide[23] (Scheme 2) in 7%
yield over three steps.[24] Interestingly,
7 was isolated as a mixture of TBS- and
TES-silylethers 7a and 7b, respectively,
presumably from the exchange of silyl-
ether groups. Although it was possible to
separate 7a and 7b via column chroma-
tography, for the next step the mixture of
silylethers was successfully employed.

Oxime 3 was synthesized from com-
mercially available 3-ethoxy-cyclohex-
2-enone (8) which was converted to acet-
ylene 9 in 93% yield and further reacted
with hydroxylamine to give a 3:1 ratio of
E- and Z-oximes (E)-10 and (Z)-10, respec-
tively.[20,25] The mixture was successfully
separated by column chromatography and
the major isomer (E) was coupled to bro-
mopyridine under Sonogashira reaction
conditions (Scheme 3).

The mixture of bromoethers 7a and 7b
was then reactedwithoxime3 and the crude
mixture of silylethers was immediately de-
protected using a TBAF·THF complex to
furnish alcohol 11 with an overall yield of
28% (five steps). With alcohol 11 in hand,
we next sought an optimal leaving group.
Initially, 11was converted to tosylate 12 in
65% yield, however attempts to substitute
the tosyl group in 12 with fluoride resulted
only in decomposition of 12 (Scheme 4).
Alcohol 11 was then converted to mesyl-
ate 13 with a higher yield (85%), reduced
reaction time and successfully substituted
to form PSS223 with potassium fluoride in
70% yield (Scheme 4).

3. Radiolabelling of 10

Mesylate 13 was also used to ob-
tain [18F]-PSS223 in one step using an
aqueous solution of 18F– complexed with
Kryptofix-222® and K

2
CO

3
as a nucleo-

philic source of fluoride at 90 °C over 10
min (Scheme 5).[24] [18F]-PSS223 was pu-
rified via semi-preparative HPLC and the
collected product was then trapped on a
C18 cartridge to remove acetonitrile used
for HPLC purification. The labelled prod-
uct was eluted with ethanol and the etha-
nolic solution of [18F]-PSS223 was diluted
with PEG:H

2
O 1:1 to give 5–6 GBq (20%

our group established an optimal range
of logD values (1.7–2.5)[20] and [18F]-
FDEGPECO exhibited a logD slightly
lower than desired. We hypothesized that
by extending the lipophilic side chain in
[18F]-FDEGPECO by one methylene unit,
the increased lipophilicity of this novel de-
rivative (E)-3-(pyridin-2-ylethynyl)cyclo-
hex-2-enone O-(2-(3-18F-fluoropropoxy)

ethyl) oxime ([18F]-PSS223, Fig. 1) could
in turn lead to a better signal-to-noise ratio
in the PET image.

2. Synthesis of PSS223

The syntheses of both PSS223 and
[18F]-PSS223 were envisioned via nucleo-
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cay corrected yield. In vitro evaluation of
[18F]-PSS223 revealed excellent binding
potential of our novel tracer; however in-
cubation of [18F]-PSS223 with rat micro-
somal enzymes suggested fast metabolism
and the in vivo analysis confirmed rapid
defluorination as reflected by accumula-
tion of radioactivity in the skull and jaws.
Further efforts are ongoing to discover an
18F-labelled alternative to [11C]-ABP688
with favourable in vitro and improved in
vivo profile suitable for clinical use.
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4. in vitro Evaluation of [18F]-
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and in vitro autoradiography with rat brain
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incubation of brain slices was conducted
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Fig. 2. In vitro au-
toradiography of
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Fig. 3. Time-activity
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PSS223 in different
rat brain regions and
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