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Abstract: Chiral single-point binding ruthenium Lewis acid catalysts [Ru(acetone)((S,S)-BIPHOP-F)(Cp)][SbF6] 
((S,S)-1a) and [Ru(acetone)((S,S)-BIPHOP-F)(indenyl)][SbF6] ((S,S)-1b) efficiently catalyze intramolecular Diels-
Alder (IMDA) reactions of trienals under mild conditions to afford the endo cycloaddition products as the major 
products in good yields with high diastereo- and enantioselectivities.
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Cycloaddition reactions with their poten-
tial for a high degree of stereo- and regio-
control are arguably the most versatile 
processes for the construction of five- and 
six-membered rings. Spectacular asym-
metric versions have been achieved by 
using chiral Lewis acid catalysts.[1] Our 
studies in this area focused on one-point 
binding chiral ruthenium Lewis acids (1a 
and 1b) that are based on structurally 
well-defined monocationic half-sandwich 
complexes that incorporate a C

2
-symmet-

ric perfluoroaryl phosphinite ligand. This 
ligand enforces the appropriate chiral en-
vironment around the coordination site 
and it also offsets the donor properties of 
the cyclopentadienyl- and indenyl-ligands 
(Fig. 1). The chiral, electron-poor ligand 
contributes to the Lewis acidity of these 
complexes, and together with the aromatic 
arene, generate a chiral binding site that is 
ideal for the activation of a,b-unsaturated 
carbonyl compounds.

The synthesis of the stable iodoruthe-
nium complex was achieved in a ‘one pot’ 
procedure from [Ru

3
(CO)

12
]. Significant to 

the success was the hydride-labilizing ef-
fect, which enabled CO substitution in the 
in situ formed [RuCp(CO)

2
H]. Heating at 

reflux in acetone in the presence of iodo-
form afforded the chiral Ru-iodo complex, 
and halide abstraction by AgSbF

6
 generat-

ed Lewis acid 1a as shown in Scheme 1.[2a] 
Catalyst 1b was synthesized via ligand 

exchange in [Ru(Cl)(indenyl)(PPh
3
)

2
] with 

BIPHOP-F to afford [Ru(BIPHOP-F)(Cl)
(indenyl)]. Halide abstraction with AgSbF

6
 

furnished Lewis acid 1b as shown in 
Scheme 2.[2b] 

These mild chiral Lewis acids proved 
to be excellent catalysts for intermolecular 
Diels-Alder (DA) reactions of various di-
enes with enals[2] and enones,[3] 1,3-dipolar 
cycloadditions of enals with nitrones[4] and 
of enals with nitrile oxides[4b,5] as shown in 
Scheme 3. The 1,4-addition of thiophenols 
to enones could also be carried out using 
these catalysts.[6] Representative examples 
are shown in Scheme 4.

We have established details of the mode 
of action of these catalysts, notably the role 
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Scheme 1. Single-point binding chiral Ru Lewis acid catalysts
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of the counteranion,[2c,d] the pendulum mo-
tion in the Ru(BINOP-F) fragment,[2e] the 
competition of enals and nitrones for the 
Lewis acid site[4c] and the preference of co-
ordination of enals and vinyl ketones to the 
Ru-center (anti-s-trans vs syn-s-trans).[3] 

To extend the application, we probed the 
potential of (S,S)-1a and 1b in the intramo-
lecular Diels-Alder (IMDA) reaction. The 
study involved trienes 2 (Scheme 5) and 
3–7 (Scheme 6) and the results of IMDA 
reactions of these substrates catalyzed by 
(S,S)-1a and 1b were investigated.[3,7,8] Tri-
ene 2 containing a vinyl ketone dieneophile, 
provided the highly enantiomerically en-
riched bridgehead adduct 8 in good yield.[3] 
Reflecting the lower reactivity of b-substi-
tuted keto-dienophiles, triene 5 failed to re-
act. Trienals 3[9a,b] and 4,[9c] which were pre-
viously used in asymmetric IMDA reaction 
by Yamamoto, furnished the cycloadducts 9 
and 10, respectively in good yields with high 
enantioselectivities. The Thorpe-Ingold 
effect from the dimethyl malonate group 
increased the reactivity of trienals 6 and 
7 shortening reaction times, from days to 
hours. An X-ray structure of a derivative of 
9 confirmed the tentative assignment made 
previously based on spectroscopic data.

The absolute configurations of products 
10, 12 and 13 were assigned by comparison 
of the CD spectra of the SAMP-hydrazones 
to that derived from 9 (Scheme 7).

X-ray structures of chiral Ru Lewis 
acid/substrate complexes have been instru-
mental for the interpretation of observed 
selectivities in cycloaddition reactions.[2–6] 
For the IMDA reaction involving triene 3 
the diene approach leading to the observed 
endo product 9 was modeled as shown in 
Fig. 2. It is proposed that the enal dieno-
phile (orange) coordinates to the Ru Lewis 
acid in an anti-s-trans conformation and 
the diene (blue) approaches the C

a
-Re-

face of the enal moiety in an endo mode. 
The pentafluorophenyl moiety of the (S,S)-
BIPHOP-F ligand blocks the Si-face (Fig. 
2). This results in the observed product ste-
reochemistry of 9.

Conclusion
We have developed efficient one-point 

binding Ru Lewis acid catalysts ((S,S)-1a 
and 1b) capable to catalyze diastereo- and 
enantioselectively not only DA reactions, 
1,3-dipolar cycloadditions and Michael 
additions but also IMDA reactions. This 
method gives access to highly enantiomer-
ically enriched bicyclic products of poten-
tial use in organic synthesis.
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Scheme 7 Asymmetric IMDA reactions catalyzed by (S,S)-1b
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Scheme 6. Asymmetric IMDA reactions catalyzed by (S,S)-1b (catalyst (S,S)-1a was less active, 
except in the case of triene 4).[7]
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orientation (catalyst part taken from the X-ray 
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configuration.
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