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Abstract: Using readily available chiral auxiliaries such as (+)- and (−)-camphanic acid, (R,R)- and (S,S)-tartaric acid
derivatives (e.g. RADO(R)-COCl, SADO(R)-COCl) efficient diastereoselective syntheses of rare sugars and glyco-
mimetics have been developed. They engage the ‘naked sugar’ (enantiomerically pure 7-oxanorbornene) meth-
odologies in which the chiral auxiliaries are recovered at an early stage of the multistep syntheses. A new reaction
cascade starting with the hetero-Diels-Alder addition of sulfur dioxide to 1-(1-phenylethoxy)-1,3-dienes derived
from inexpensive (+)- and (−)-1-phenylethanol allows the one-pot, four-component synthesis of polyfunctional
sulfones, sulfonamides and sulfonic esters containing up to three stereogenic centers. The method ensures a high
molecular and stereochemical diversity. The reaction cascade can also produce polyketide and polypropionate
fragments in one-pot operations. The latter contain up to three contiguous stereogenic centers and do not have to
be modified (deprotection, activation) before using them as nucleophilic partners in diastereoselective cross-aldol
reactions, thus permitting the quick access to complicated polypropionate antibiotics such as Baconipyrones,
Ryfamicyn S and Apoptolidines.
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pharmaceutical industry is thus confronted
with the necessity to produce drugs that are
enantiomerically pure, and also compounds
that are more and more complicated with
respect to their chemical multifunctionality
and stereochemistry. Racemate resolution
and chiral separation technologies[8] are
sometimes economical. In some cases, de-
racemization can be a very economical op-
tion.[9] Asymmetric synthesis may represent
a cost-effective alternative if the molecular
complexity can be reached in a few synthet-
ic steps.[10−12] Thus in the future medicinal
chemistry will require more and more ef-
ficiency in access to both molecular com-
plexity and enantiopurity. One of the most
elegant approach is asymmetric induction
by enantiomerically pure catalysts, provid-
ed the latter are non-toxic and inexpensive,
or have high turnover numbers, and lead to
high enantiomeric excesses. If not, enantio-
meric enrichment might add too much to
the cost of drug production.[11] Alterna-
tively, diastereoselective synthesis[13] rely-
ing on inexpensive enantiomerically pure
starting materials (chiral pool) or on chiral
auxiliaries that can be recycled at an early
stage of a multistep synthesis remains quite
often the best method in terms of toxicity
and respect toward the environment. With
the ‘naked sugars of the first[14,15] and sec-

ond generation’,[16,17] the ‘aza-naked sug-
ars’,[18,19] and a new reaction cascade using
Umpolung with sulfur dioxide[20] our group
has presented a number of methodologies
that permit the quick and efficient construc-
tion of a large variety of compounds of bio-
logical interest. They can be prepared pure
in both their enantiomeric forms with the
same ease. Examples of applications will
be reviewed here.

2. ‘Naked Sugars of the First
Generation’: Asymmetric Syntheses
of Conduramines Inhibitors of
Glycosidases

The 1-cyanovinyl (1’S)-camphanate
(derived from (1S)-camphanic acid and
pyruvonitrile) adds to furan in the presence
of ZnI2 as catalyst.After seven days at room
temperature a mixture of four possible di-
astereomeric Diels-Alder adducts is formed
(95%) from which adduct 1 can be isolated
pure by crystallization. Unreacted furan is
recovered and the diastereomer mixture left
from the crystallization is heated to give
furan and 1-cyanovinyl (1’S)-camphanate
that can be recycled to prepare more of
the diastereomerically pure adduct 1 (the
reversibility of the furan Diels-Alder addi-
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1. Introduction

More than 55% of the drugs currently in use
arechiralcompoundsandnear90%ofthelat-
terareadministratedasracemicmixtures.[1−4]

This proportion is diminishing as safety
and efficiency of single enantiomers are
usually better than for racemates.[5−7] The
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tion is exploited here). Starting from (1R)-
camphanic acid which is also commercially
available, pure adduct 2 can be prepared in
large quantities as readily. Camphanic acid
auxiliaries can be replaced by the chiral aux-
iliaries (1R,5S,7R)-3-ethyl-2-oxo-3-aza-
6,8-dioxabicyclo[3.2.1]octane-7-carboxy-
lic acid (RADO(Et)OH) or (1S,5R,7S)-3-
ethyl-2.oxo-3-aza-6,8-dioxabicyclo[3.2.1]
octane-7-carboxylic acid (SADO(Et)OH)
derived from (R,R)-tartaric acid and (S,S)-
tartaric acid.[21]

Enantiomerically pure 7-oxanorborne-
nyl derivatives 1 and 2 and their products of
saponification (recovery of the chiral aux-
iliary in the aqueous phase), ketones (+)-3
and (−)-3 (Fig. 1), are coined ‘naked sugars
of the first generation’ because they are chi-
rons (= enantiomerically pure synthetic in-
termediates) like those derived from natural
hexoses.Theyareenantiomericallypure like
natural sugars, but with three unsubstituted
(naked) carbon centers, the substitution of
which follows highly stereoselective routes
giving polysubstituted 7-oxabicyclo[2.2.1]
heptane-2-ones that can be oxidized into
the corresponding uronolactones.[22]

Benzyl acetal of (+)-3 was epoxidized
into (+)-4. Upon acidic treatment (+)-4 was
converted into (−)-5. After debenzylation,
silylation and a treatment with (t-Bu)Me2
SiOTf/Et3N, cyclohexenone (−)-6 was ob-
tained.[23] Reduction of (−)-6 followed by

Mitsunobudisplacementfurnished(−)-Con-
duramine B-1 ((−)-8) (Scheme 1). Its N-
benzyl derivatives are selective and com-
petitive inhibitors of β-glucosidases.[24]

Enone (−)-6 can also be converted into
alcohol (−)-9 which was then trans-
formed into (+)-ent-Conduramine F-1
((+)-10). N-benzyl derivatives of (+)-10
are selective and competitive inhibitors of
α-glucosidases.[25]

3. ‘Naked Sugars of the Second
Generation’: Synthesis of Doubly
Branched Chain Sugars and of
Polypropionates

Doubly branched heptono-1,4-lactones
as well as polypropionate fragments have
been obtained from 2,4-dimethylfuran via
its Diels-Alder addition to 1-cyanovinyl-
(1’R)-camphante (+)-12.[16] Without sol-
vent, the ZnI2-catalyzed and reversible
cycloaddition leads to a major crystalline
diastereomeric adduct (+)-13. Double hy-
droxylation of the alkene moiety of (+)-13,

followed by diol protection as an acetonide
provides (−)-14. Methanolysis followed by
treatment with formaline liberates ketones
(+)-15 and allows recovery of the chiral aux-
iliary (1R-camphanic acid). Baeyer-Villiger
oxidation and subsequent α-methylation
generates the exo-α-methyluronolactone
(−)-16. Quenching of the lithium enolate
of (−)-16 with MeOH at −50 °C gives the
endo-α-methyluronolactone (−)-17. Acid-
ic hydrolysis of (−)-17 and subsequent
silylation and reduction forms (+)-18 as
major heptono-1,4-lactone (Scheme 2).
Similarly, enantiomers of this doubly
branched sugar can be prepared starting
from adduct (−)-20 obtained by addition of
2,4-dimethylfuran to 1-cyanovinyl (1’S)-
camphanate (−)-19. After conversion of
(−)-20 into dimethyl acetal 21, regio- and
exo-face-selective hydroboration 19 and
further transformations generate the dou-
bly branched uronic acid.[16]

The method of thermodynamic diaste-
reoselection (through diastereoselective
crystallization of equilibrating adducts, see
Scheme 2) has been applied to furan deriva-
tives bearing chiral auxiliaries that can be
recovered readily. For instance, the acetal
of (2S,3S)-butane-2,3-diol and furfural is
equilibrated in molten maleic anhydride
with one major crystalline product.[26] In
a similar way, (1S)-camphanate of furfuryl
alcohol 24 undergoes Diels-Alder addi-
tion in molten maleic anhydride giving one
major crystalline adduct (+)-25[27] that has
been converted into doubly branched carba-
hexopyranoses and derivatives[28] and into
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the new 2,6-dideoxy-2,6-iminoheptitol 27
(Scheme 3).[29]

4. A New Asymmetric C−C bond
Forming Reaction: Umpolung with
Sulfur Dioxide

When (E)-1-methoxybutadiene (28) is
reacted with a large excess of SO2, in the
absence or in the presence of a Lewis acid
catalyst (e.g. TBSOTf) only sulfolene 29 is
formed between −100 and −60 °C. At 0−20
°C quick polymerization occurs. However,
when a mixture of 28 and enoxysilane 32 is
reacted with SO2 + TBSOTf at −100 °C, si-
lyl sulfinate 33 forms. After solvent evapo-
ration (recovery of SO2) and treatment with
Bu4NF and MeI a 81:19 mixture of methyl
sulfones 34 and 35 is obtained (100% (Z)-
stereoselectivity).[30,31] The formation of 33
is explained by invoking the fast hetero-
Diels-Alder 28 + SO2 giving sultine 30 that
is immediately heterolyzed into zwitterion
31. In the absence of enoxysilane, it equili-
brates back to 28 which finally undergoes
the cheletropic addition with SO2. In the
presence of 32, oxyallylation occurs pro-
ducing 33, and then 34 + 35 (Scheme 4). The
reaction of enantiomerically enriched diene
(+)-36 (Greene’s chiral auxiliary;[32] >99%)

and enoxysilane 37 in SO2 andYb(OTf)3 as
catalyst, the same one-pot sequence of reac-
tion generates (−)-38 in 79% yield and 25:1
diastereoselectivity. Similarly, diene (−)-39
and enoxysilane 40 (cat: (CF3SO2)2NH),
gives a 93% yield of a 14.1:1 mixture of
(−)-41 and 42 (Scheme 5).[33−35] The results
(Scheme 5) are interpreted in terms of the
formation of sultines 43 that are ionized
into zwitterions 44 (Scheme 6). The least
sterically hindered face of the diene under-
goes suprafacial cycloaddition leading to
unlike relative configuration between the
β-alkoxy and ε-methyl group in (−)-41 and
42. The face of the zwitterionic intermedi-
ate anti with respect to the sulfinyl moiety
(which is not allowed to rotate freely be-
cause of Coulombic interactions between it
and the oxycarbenium moiety of 44) adds
to the enoxysilane preferentially on the face
realizing minimal steric interaction with 44.
In these C−C bond forming reactions that
condense two electron-rich unsaturated
systems, sulfur dioxide realizes an Umpo-
lung by converting the 1-oxy-1,3-dienes
into 1-oxyallylic cationic intermediates that
react with high regio- and face selectivity
onto their C1 centers with nucleophilic alk-
enes. No direct experimental proof has been
provided yet for the mechanism proposed
in Scheme 6.

5. One-pot, Four-component
Synthesis of Sulfones,
Sulfonamides, and Sulfonic Esters

Organosulfones and sulfonamides are
important compounds because of their
chemical and biological properties. Other
electrophiles, EX, apart from MeI (e.g. al-
lyl, methallyl, arylmethyl bromides; BrCH-

2COOEt;[36] alkyl iodides, 2,4-dinitrofluo-
robenzene) combine with a large variety of
1-alkoxy- or 1-trialkylsilyloxy-1,3-diene
48, SO2 and enoxysilanes or allylsilanes
47, thus realizing a combinatorial, one-pot,
four-component synthesis of polyfunc-
tional sulfones 50. If the crude silyl sulfi-
nates 49 are oxidized with Cl2 or N-chlo-
rosucciminide (NCS), the corresponding
sulfonyl chlorides 51 are formed that can
be reacted in situ with primary or second-
ary amines to generate polyfunctional sul-
fonamides 52 or with alcohols, to give the
corresponding sulfonic esters 53 (Scheme
7).[37,38] For the first time new medium-size
heterocyclic systems such as (+)-57 have
been prepared (Scheme 8). The reaction
of 54 with diene (−)-55 (97% ee) in SO2/
toluene premixed with 0.3 equiv. of Tf2N-
SiMe3 at −78 °C gives a single silyl sulfi-
nate 56. Starting with (+)-55 and 54 and by
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treatment of the intermediate silyl sulfinate
(ent-56) with Pd(Ph3P), the 2H-thiocene
derivative (+)-57 is obtained in 41% overall
yield (Scheme 8).[38]

6. One-pot Synthesis of
Polypropionate Stereotriads: Total
Asymmetric Syntheses of Natural
Polyketide Antibiotics

The thermal desulfinylation of
α-substituted β,γ-unsaturated sulfinic acids
is stereoselective.[39,40] This is also observed
with 60 → 61 + SO2 (Scheme 9).

Because the desulfinylation of β,γ-
unsaturated sulfinic acids requires acidic
conditions (to form the sulfinic acids) it is
often accompanied by elimination or/and
retro-aldol reactions. Furthermore, sulfinic
acids undergo disproportion.[39] We have
found that the silyl sulfinate intermediates
of type 49 (Scheme 7) can be desilylated
by 1:1 Pd(OAc)2/PPh3 catalyst, liberating
the corresponding β,γ-unsaturated sulfinic
acids that undergo a palladium-catalyzed
desulfinylation in the presence of K2CO3
and isopropanol with high yield and stereo-
selectivity.[41] The mechanism of the latter
reaction is under investigation.

The usefulness of our one-pot polypro-
pionate synthesis is demonstrated in the ex-
peditious assemblies of the cyclohexanone
unit 68 of baconipyrones A and B (Scheme
10),[42] and of a stereoheptad (−)-73 corre-

sponding to the C19−C27-ansa chain of Ri-
famycins (Scheme 11).[43]

Reaction of 31 and (−)-62 (97% ee)
with SO2 in toluene and Tf2NH provides a
silyl sulfinate. The residue is treated with
Pd(OAc)2/Ph3P catalyst in the presence of
K2CO3, isopropanol and acetonitrile pro-
viding pure stereotriads (−)-63 (67% yield)
and (−)-64 (13%). Treatment of (−)-63 with
Bu3SnOMe at 70 °C promotes a highly
stereoselective intramolecular aldol reac-
tion giving 67. Hydrogenolysis of 67 af-
fords 68. In this case, inexpensive (1S)-1-
phenylethanol is used as chiral auxiliary
to generate the starting diene (−)-62. The
silyl (Z)-enol ether 69 derived from (−)-63
reacts with 9-bromo-9-borabicyclo[3.3.1]
nonane (Br-BBN) in CH2Cl2 (silyl/boron
exchange) and then with aldehyde (+)-70
to produce a 12.5:1 mixture of aldols (+)-71
and 9-epimer in 81% yield. Pure (+)-71 is
reduced under Evans’ conditions to give di-
ol (−)-72 (83%), a stereoheptad equivalent
to Kishi’s intermediate (−)-73 of the asym-
metric synthesis of Ryfamycin S. The latter
was derived from (−)-72 (does not have to
be purified for the next step) as shown in
Scheme 11. Thus, Kishi’s advanced inter-
mediate is obtained in 25% overall yield in
eight steps starting from inexpensive diene

(−)-62. The synthesis requires the isolation
of only four synthetic intermediates.[43]

Application of our reaction cascade to the
asymmetric synthesis of the polypropionate
fragment of Apoptolidin has also been suc-
cessful[44] (Scheme 12).

7. Short Synthesis of the C16−C28
Polyketide Fragment of Apoptolidin
A Aglycone

ApoptolidinA (74) (Fig. 2) isolated from
Nocardiopsis sp. and natural analogues B
(75) and C(76) are among the most interest-
ing leads for cancer chemotherapy as they
induce apoptosis selectively in cancer cells.
[45] We have reported a very short synthesis of
Nicolaou’s intermediate C1−C11 fragment of
71,[46−52] applying our one-pot four-compo-
nent synthesis of polyfunctional sulfones. A
short synthesis of Koert’s C16−C28 fragment
(86) of apoptolidinone A applying our new
organic chemistry of sulfur dioxide is shown
inScheme11.Theenantiomericallyenriched
(97% ee) diene 77 (derived from inexpensive
(R)-1-phenylethanol) and silyl ethers 78 (1:1
E/Z mixture) were added to a premixed solu-
tion of (CF3SO2)2NH in SO2/CH2Cl2 (5:1)
cooled to 78 °C. After stirring overnight at
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this temperature a β,γ-unsaturated silyl sul-
finate formed. After recovery of the solvent
(SO2 and CH2Cl2) by evaporation at low
temperature, in situ alcoholysis liberated a
β,γ-unsaturated sulfinic acid that underwent
stereoselective retro-ene elimination of SO2
affording the stereotriad 79 (α,β,γ-syn,anti)
and its anti/anti diastereoisomer as a 4:1
mixture. α-Hydroxylation of methyl ketone
79 (crude 4:1 mixture) was achieved by
dimethyl(tert-butyl)silyl enol ether forma-
tion and subsequent Rubottom oxidation
giving 80. The latter underwent Mukaiyama
aldol coupling with aldehyde 81 producing
alkene 82 in 73% yield with 2,4,5-anti,syn
relative configuration as expected by the
Evans polar model.[53,54] Ozonolysis of alk-
ene 82 provided the corresponding aldehyde
which was treated under Brown’s allylation
conditions.[55] Acidic treatment of 83 led to
desilylation, debenzylation and Fischer gly-
cosidation giving the corresponding methyl
pyranoside which was not isolated. Careful
treatment of the resulting oil with Ac2O-
pyridine (0−20 °C) acetylated selectively
the acyclic 1,2-diol moiety affording diac-
etate 84. The cyclohexanol moiety was then
silylated into silyl ether 85 under standard
conditions. Sharpless asymmetric dihydrox-
ylation[56] of the terminal akene moiety of
85 using (DHQD)2PYR ligand[57] furnished
corresponding 1,2-diol. Selective monom-
ethylation of the crude mixture using MeI-
Ag2O[58] afforded alcohol 86 (68%).

The rapid access of this advanced frag-
ment of apoptolidin A is made possible by
the utilization of our one-pot reaction cas-
cade giving rise to functionally rich stereotri-
ads. These quickly accessible intermediates
contain both an alkyl ketone on one terminus,
allowing for aldol couplings, and an alkene
on the other which can readily be converted
to other functionalities for chain expansion.
Our synthesis of 86, key intermediate used
for the total synthesis of apoptolidin A, starts
from inexpensive diene 77 and enoxysilane
78 and requires only nine steps, thus mak-

ing the shortest synthesis of the C16−C28
fragment reported to date. The method de-
veloped should enable us to prepare several
analogues of biological interest.

8. Conclusion

Using readily available chiral auxilia-
ries such a (+)- or (−)-camphanic acid, our
RADO(R)COCl and SADO(R)COCl de-
rived from (R,R)- and (S,S)-tartaric acid, re-
spectively, and (+)- and (−)-1-phenylethanol,
efficient asymmetric synthesis of important
compounds of biological have been devel-
oped. In many cases the chiral auxiliaries are
recovered at an early stage of the multistep
synthesis. The chemistry developed permits
the attainment of high molecular complexity
and diversity in terms of polyfunctionality
and stereochemistry. Enantiomerically pure
Diels-Alder adducts of furan and derivatives
have been converted into all kinds of rare
sugars and glycomimetics. A new reaction
cascade starting with the hetero-Diels-Alder
addition of sulfur dioxide to enantiomeri-
cally pure 1-(1(S)- or 1(R)-phenylethyloxy)-
1,3-dienes generate sultines that are ionized

into zwitterionic species that react at low
temperature with electron-rich alkenes such
as enoxysilanes producing silyl sulfinate in-
termediates. The latter can be converted ei-
ther to enantiomerically pure, polyfunctional
sulfones, sulfonamides, sulfonic esters or to
polypropionate fragments containing up to
three contiguous stereogenic centers in one-
pot operations. The latter reaction cascade
generates stereotriads that are ready for fur-
ther C−C bond forming reactions including
stereoselective cross-aldol condensations,
thus permitting quick access to complicated
polyketide and polypropionate antibiotics
and analogues.
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