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tional Calculations with the Gaussian 
and Augmented-Plane-Wave Method
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Abstract: The calculation of the electronic structure of large systems by methods based on density functional theory 
has recently gained a central role in molecular simulations. However, the extensive study of quantities like excited 
states and related properties is still out of reach due to high computational costs. We present a new implementa-
tion of a hybrid method, the Gaussian and Augmented-Plane-Wave (GAPW) method, where the electronic density 
is partitioned in hard and soft contributions. The former are local terms naturally expanded in a Gaussian basis, 
whereas the soft contributions are expanded in plane-waves by using a low energy cutoff, without loss in accuracy, 
even for all-electron calculations. For the calculation of excitation energies a recently developed, time-dependent 
density functional response theory (TD-DFRT) technique is joined with the GAPW procedure. We demonstrate the 
accuracy of the method by comparison with standard quantum chemistry calculations for a set of small molecules. 
To highlight the performance and efficiency of GAPW we show calculations on systems with several thousands of 
basis functions.
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in DFT) should be reached and on the other 
hand more accurate models should be de-
veloped. The development of new function-
als is an art on its own and will not concern 
us here. However, it is intimately related to 
the efficiency problem, as only numerically 
accurate tests on more and more complex 
systems can give unambiguous information 
on the performance of new functionals. The 
goal of improved algorithms is therefore, 
to provide methods to accurately and effi-
ciently solve the KS equations.

Our recent work has focused on the 
development of methods to perform KS 
calculations using accurate basis sets on 
large systems, including condensed matter 
systems requiring periodic boundary condi-
tions (PBC). The methods are based on a 
dual approach [3][4], where the KS orbitals 
are expanded in Gaussian type basis sets, 
common in most standard quantum chem-
istry codes, and the electronic charge den-
sity is represented using a plane-wave (PW) 
basis. In this basis the calculation of the 
Hartree potential is straightforward and by 
making use of fast Fourier transforms (FFT) 
the complexity of this part of the calculation 
becomes O(N log N), where N is the number 
of basis functions taken as a measure of the 
system size [3][4]. In order to reduce the 
size of the PW basis set pseudopotentials 
(PP) of the dual-space type [5][6] are used. 
The latest implementation of the Gauss-

ian and plane-wave (GPW) method [4] has 
been done within the CP2K program and 
the corresponding module is called Quick-
step [7]. In this implementation the linear 
scaling calculation of the GPW KS matrix 
elements is combined with an optimizer 
based on orbital transformations [8]. This 
optimization algorithm scales linearly in 
the number of basis functions for a given 
system size and, in combination with par-
allel computers, it can be used for systems 
with several thousands of basis functions.

The GPW method is very efficient in 
comparison with other methods. However, 
since we rely on the PP approximation in 
order to limit the size of the PW basis, GPW 
is not suited for all those applications that 
require the full electron density. Moreover, 
even when PP are used, systems contain-
ing second-row transition metals require 
the inclusion of rather localized semi-core 
states into the valence region. The resulting 
density can be properly described with a 
PW expansion only using a very large basis 
set, therefore reducing the efficiency of the 
GPW method. These drawbacks of the GPW 
method have been overcome with the Gauss-
ian and augmented-plane-wave (GAPW) 
method [10][11]. The GAPW method uses 
the PW representation of the density only 
for the smoothly varying density between 
atoms, but relies on localized functions for 
the rapidly varying density close to the nu-
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Introduction

Density functional theory (DFT) [1] is the 
method of choice for the calculation of elec-
tronic properties of large systems. This is 
due to the combination of accuracy and effi-
ciency that has been achieved for the Kohn-
Sham (KS) method in DFT [2]. The success 
of the KS method makes it also the primary 
target for new developments to increase 
both accuracy and efficiency. Increase in 
accuracy has to be achieved in two fields. 
On one hand the numerical limit of a given 
model (i.e. exchange-correlation functional 
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clei. The basic idea of this separation was 
taken from the projector augmented-wave 
(PAW) scheme proposed by Blöchl [12]. 
Here we report on the implementation of 
the GAPW scheme in the Quickstep code. 
Accuracy and performance data are shown. 
The GAPW method for ground state DFT 
calculations is extended to linear response 
within time-dependent DFT. First tests of 
the implementation show a satisfying accu-
racy and open promising perspectives for 
the calculation of the excitation energies in 
extended systems.

GAPW Method

Like many other approaches in quantum 
chemistry, the GAPW method uses a basis 
of contracted Gaussian functions to expand 
the Kohn-Sham orbitals φι(r)

The contraction coefficients dmα are 
held fixed during a calculation and the func-
tions gm(r) are primitive Gaussian functions 
characterized by the order of their mono-
mial pre-factor and their exponent αm

These simple functions are the natural 
basis set to describe atomic and molecular 
orbitals. Furthermore all the density inde-
pendent contributions to the KS Hamilto-
nian, like the kinetic energy and the elec-
tronic interaction with the ionic cores, can 
be calculated analytically using integral 
recurrence relations [13]. In order to avoid 
the cumbersome and time-consuming four 
center integrals needed for the Coulomb 
terms, the GPW method exploits the PW 
representation of the density. The Coulomb 
potential is then calculated in reciprocal 
space using fast Fourier transforms [3]. 
However, the PW basis set is not appro-
priate to describe the complex structure of 
the electronic density in the vicinity of the 
atoms. For this reason the GAPW method 
uses a dual representation of the electronic 
density, where the usual expansion of the 
density using the density matrix P

is replaced in the calculation of the Cou-
lomb and exchange-correlation (xc) energy 
by

In our current implementation the den-
sities ñ(r), nA(r), and ñA(r) are expanded 
in plane-waves and products of primitive 
Gaussians centered on atom A, respective-
ly 

In Eqn. (5), ñ(G) are the Fourier coef-
ficients of the soft density, as obtained from 
Eqn. (3) by keeping in the expansion of the 
contracted Gaussians only the primitives 
with exponents smaller than a given thresh-
old. Ω denotes the volume of the periodic 
cell and all wave-vectors G correspond-
ing to a given grid spacing are included in 
the expansion. The expansion coefficients 
   , and      are also functions of the  
density matrix Pαβ and can be calculated 
efficiently [11].

The separation of the density from Eqn. 
(5) is borrowed from the projector aug-
mented-wave approach [12]. Its special 
form allows the separation of the smooth 
parts, characteristic of the interatomic re-
gions, from the quickly varying parts close 
to the atoms, while still expanding integrals 
over all space. The sum of the contributions 
in Eqn. (3) gives the correct full density if 
the following conditions are fulfilled 

The first conditions are exactly satisfied 
only in the limit of a complete basis set. 
However, the approximation introduced in 
the construction of the local densities can 
be systematically improved by choosing 
larger basis sets.

For semi-local xc functionals such as 
the local density approximation, general 
gradient approximations or meta function-
als using the kinetic energy density, the xc 
energy can be simply written as

The first term is calculated on the real-
space grid defined by the plane-wave ex-

pansion and the other two are efficiently 
and accurately calculated using atom cen-
tered meshes.

Due to the non-local character of the 
Coulomb operator, the decomposition for 
the electrostatic energy is more complex. 
In order to distinguish between local and 
global terms, we need to introduce atom-
dependent screening densities, nA

0 (hard) 
and ñA

0 (soft), that generate the same mul-
tipole expansion Qlm

A as the local density 
                      , where      is the nuclear charge 
of atom A.

The primitive Gaussian    and 
            are defined with large and small expo- 
nents, respectively, and normalized. Since 
the sum of local densities           
has vanishing multiple moments, it does not 
interact with charges outside the localiza-
tion region, and the corresponding energy 
contribution can be calculated by one-cen-
ter integrals. The final form of the Coulomb 
energy in the GAPW method reads [11] 
then

where quantities n0, ñ0 are summed over 
all atomic contributions, and EH[n] and 
VH(n(r)) denote Coulomb energy and po-
tential of a charge distribution n. The first 
term in Eqn. (9) can be calculated efficiently 
using fast Fourier transform methods. The 
next three terms involve Coulomb integrals 
over two and three Gaussian functions. The 
special form of these terms allow them to 
be calculated efficiently using analytic inte-
gral formulas [13]. The final terms are one-
centered and are calculated in our current 
implementation on radial atomic grids.

The total electronic energy within the 
GAPW method is therefore calculated 
from

where hαβ denotes matrix elements of the 
core Hamiltonian, the sum of kinetic en-
ergy and local part of the external potential 
[10][11]. The special form of the GAPW 
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energy functional involves several approxi-
mations in addition to a standard imple-
mentation. The number of reciprocal space 
vectors included in the expansion of the 
smooth density ñ(r) controls the accuracy 
of the corresponding terms in Coulomb and 
xc energy. The accuracy of the local ex-
pansion of the density is controlled by the 
flexibility of the product basis of primitive 
Gaussians. As we fix this basis to the primi-
tive Gaussians present in the original basis 
we cannot independently vary the accuracy 
of the expansion. Therefore, we have to 
consider this approximation as inherent to 
the primary basis used.

Time-dependent DFT with GAPW

Excitation energies in time-dependent 
DFT (TDDFT) are defined as the station-
ary points of the functional [14][15]

The Lagrange multiplier w is real valued 
and is in the adiabatic approximation equal 
to the excitation energy ω at the stationary 
points. The first order response of the one-
particle density matrix P(1)(r,r’) is related 
to the vectors x and y

The sums extend over all occupied states 
i and unoccupied states a of spin symmetry 
σ and Φiσ(r) are optimized Kohn-Sham or-
bitals. The matrices A and B are defined by 

In this Eqn. Fabσ denotes the KS matrix in 
the basis of KS orbitals Φaσ(r) and   
denotes the kernel function evaluated at the 
ground state density

In our implementation we make use of 
the Tamm-Dancoff approximation [15] that 
is most easily recovered by setting x = –y 
in Eqn. (11)

To obtain working expressions for the 
operators within the GAPW method we 
replace the Kohn-Sham matrix F by its 
GAPW formulation and write the contri-
bution of the kernel function to the energy 
functional G as

where   and

the xc kernel is derived from a semi-local xc 
functional. By a straightforward extension 
of the GAPW charge density decomposi-
tion to the response density

we find

The functions fxc[n] denote integrals of 
the type

Accuracy

To assess the accuracy of the GAPW 
method we compare molecular structures 
and total energies of a series of small mol-
ecules with results obtained by standard 
quantum chemistry packages [16][17] 
for the BLYP density functional [18][19]. 
The results from the standard calculations 
can be considered the limiting values of a 
GAPW calculation that have to be reached 
for the case of a complete plane-wave and 
local function basis. The maximum error 
in bond length for the set of tested mole-
cules is shown in Fig. 1. The calculations 
were performed with a 6-31G* and 6-
311++G(3df,3dp) Gaussian basis sets. The 
error is for all cases below 0.2 pm.

The plane-wave basis can be improved 
independently and the test calculations have 
been performed with a kinetic energy cutoff 
of 250 Ry. This value ensures almost con-
verged results for the plane-wave part. The 
expansion of the local atomic densities re-
lies on the primitive Gaussians present in the 
primary basis set. We therefore can expect 
that large basis sets will have results closer 
to the reference value. This is confirmed by 
the decrease in the maximum difference in 
the bond length reported for almost all the 
molecules that have been optimized also 
with the large basis set. This feature is even 
more evident from the differences in the 
single point energies and the energies of 
the optimized structures, which can be seen 
in Fig. 2. While for the smaller basis set the 
energy differences are always lower than 1 
mHartree, with the 6-311++G(3df,3dp) ba-
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Fig. 1. Difference in bond length [pm] of a set of small molecules for two basis sets
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sis they decrease to values below 0.1 mHar-
tree. This number has to be compared with 
difference of the same order or larger for 
auxiliary basis calculations [20].

As expected, the GAPW method shows 
a faster convergence with the PW energy 
cutoff than the GPW method. We performed 
a set of geometry optimizations for a water 
molecule in a cubic box of 15 Å, with the 
BLYP functional, dual-space PP [5] and en-
ergy cutoff ranging from 100 to 1000 Ry. 
We observe that already at 200 Ry the total 
energy is converged within ~1 μEh and the 
bond lengths fluctuations are below 20 μÅ. 
Without adding any smoothing correction, 
the GPW method can reach such stability 
only for energy cutoff above 800 Ry [4].

Calculation methods that involve regu-
lar grids or plane-wave basis sets for the 

evaluation of the exchange and correlation 
integrals all show a periodic dependence of 
the total energy on the grid spacing. These 
energy ripples are also known in plane-
wave basis calculations and are often very 
irritating, especially for high precision cal-
culations. In the GPW method the ripples 
problem is enhanced by a special property 
of the pseudopotentials employed. The du-
al-space pseudopotentials produce atomic 
densities that approach a zero value at the 
nuclei and it has been shown that this can 
lead to numerical problems. However, in 
the GAPW method this problem is largely 
avoided by the construction of the smooth 
density that is used in the plane-wave ex-
pansion. The effect of this smoothing is 
easily seen in Fig. 3 where the dependence 
of the total energy on the grid position is 

shown for both a GPW and GAPW calcula-
tion of a single water molecule. The maxi-
mum change of the total energy is reduced 
in the GAPW method by more than an order 
of magnitude using the same plane-wave 
cutoff of 300 Ry.

Finally, we performed a series of cal-
culations on low-lying excited states of 
water and formaldehyde. Results from the 
GAPW implementation of TDDFT com-
pare well with the corresponding results 
from standard quantum chemistry codes 
[16][17] (see Table). The calculations have 
been performed using the PBE functional 
[21] with a quadruple-zeta valence type 
basis augmented with diffuse functions 
and three sets of polarization functions and 
dual-space pseudopotentials [5] for form-
aldehyde. The standard quantum chemistry 
calculations used an aug-cc-pVQZ basis 
for both molecules and the same basis was 
used in an all-electron GAPW calculation 
for water. Remaining differences can be at-
tributed to the use of pseudopotentials in 
one of the calculations, the approximations 
from the GAPW method and the use of the 
Tamm-Dancoff approximation.

Performance

The performance of the current imple-
mentation of the GAPW method has been 
tested with two types of systems. Both calcu-
lations employ the BLYP functional [18][19] 
and a 200 Ry plane-wave cutoff. A series of 
calculations on water with increasing system 
size shows the overall actual scaling of the 
method. In Fig. 4 the CPU times for a single 
SCF iteration for water systems from 32 to 
1024 molecules are shown. One series of 
calculations has been performed with a triple 
zeta valence basis set with two polarization 
functions and pseudopotentials, leading to 
40 basis functions per molecule. The other 
series uses the all-electron implementation 
of GAPW and a triple zeta valence basis set 
with a single set of polarization functions, 
leading to 30 basis functions per molecule. 
The two largest calculations are therefore a 
pseudopotential calculation with 3072 at-
oms, resulting in 4096 occupied orbitals ex-
panded in 40'960 basis functions and an all-
electron calculation of 512 water molecules 
with 2560 occupied KS states expanded in 
15'360 basis functions. The water test calcu-
lations were run on an IBM p690 computer 
with 32 CPUs. By the use of efficient screen-
ing procedures, we exploit the sparsity of the 
KS Hamiltonian, which couples only basis 
functions that are located on nearby atoms. 
The construction of the KS matrix and of 
the density scales, therefore, linearly with 
the size of the system. The slight deviation 
from linear behavior for the large systems 
that can be seen in Fig. 4 is due to the opera-
tions on molecular orbitals that have to be 

Fig. 2. Difference in total energy [mHartree] for a set of small energies. Calculations are performed for 
two basis sets at experimental and optimized geometries

Fig. 3. Change in energy 
for a single water 
molecule as a function 
of position
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performed for the optimization procedures. 
We currently do not make use of sparsity 
in this part of the program and therefore an 
asymptotic cubic scaling is expected.

The last performance test is a single 
point energy calculation of the unit cell of 
the crambin molecule. This small peptide 
has 46 residues and crystallizes in a unit 
cell with two molecules. The calculation 
included 1284 atoms. With the use of pseu-
dopotentials we arrive at 3626 electrons in 
the system. The basis sets are of double-zeta 
polarization (DZVP) and triple-zeta double 
polarization (TZV2P) quality, resulting in a 
total of 11'652 and 20'058 basis functions, 
respectively. The calculations needed 142 
sec and 324 sec per SCF cycle on a single 
frame (32 CPUs) of an IBM p690, demon-
strating again that full DFT simulations of 
systems with more than 1000 atoms are fea-
sible using the GAPW method.

Summary

A new implementation of the Gaussian 
and augmented-plane wave method has been 
presented. The GAPW method allows for ef-
ficient and accurate density functional calcu-
lations of small and large molecules either as 
isolated systems or with periodic boundary 
conditions. Especially noteworthy is that such 
calculations can be performed using large ba-
sis sets, reaching almost the basis set limit. 
We showed the accuracy of the approach by 
comparing total energies and structures with 
results from standard quantum chemistry 
codes. Efficiency and scaling was demon-
strated on a series of water systems reaching 
up to more than 3000 atoms and 40'000 basis 
functions as well as on the unit cell of a small 
peptide with more than 1000 atoms. It could 
be shown that calculations of this size can be 
performed on medium-sized computers, a 
single frame of an IBM p690 in our case.

The GAPW method provides an ideal 
starting point for the calculation of mo-
lecular properties in the condensed phase, 
especially molecules in solution. Through 
its capability to provide all-electron wave-

functions also properties that depend on the 
electron density close to the nuclei are ac-
cessible. As a first application we showed 
the calculation of excitation energies with 
the linear response approach to TDDFT.

The GAPW method makes it possible 
to study systems that have been inacces-
sible to density functional methods so far. 
It does so without compromising accuracy, 
even for large systems high quality basis 
sets can be employed. The GAPW method 
sets therefore a new standard for electronic 
structure calculations of large systems.
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