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o~-Fluoro-Benzylphosphonates as
Reagents for the Preparation of
1-Fluoro-1-Aryl Alkenes and
a-Fluorostilbenes
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Abstract: The preparation of several fluoro-benzylphosphonates Ar-CHF-PO(OEt), and their Wadsworth-Emmons
type olefination with aldehydes and ketones are described affording fluorostyrenes and fluorostilbenes. Some of
these compounds are incorporated into target molecules tested as drug candidates.
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Introduction

Ylide-type chemistry is well elaborated
in the field of fluorine-organic chemistry
and has been comprehensively reviewed re-
cently [1]. For example, the reaction of o-
fluoro-benzylphosphonate with benzalde-
hyde to form fluorostilbene (Scheme 1) was
reported as early as 1968 [2] but has
reached only limited attention until recent-
ly [3].

As part of our studies towards the prepa-
ration of fluoroolefins and their application
in medicinal chemistry [4], we have also in-
vestigated this reaction more closely, vary-
ing the structure of the carbonyl compound
as well as that of the fluoro benzylphospho-
nate; this paper summarizes the results.
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Preparation of Fluoro-benzyl-
phosphonates

Several methods have been reported for
the preparation of a-fluoro-benzylphos-
phonates (Scheme 2, A [5], B [6], C [7]);

the most widely applicable and also most
simple being the conversion of a-hydroxy-
benzylphosphonates (D) using DAST [8] or
similar fluorinating agents [2].
a-Hydroxy-benzylphosphonates 2 are
easily accessible by the base-catalyzed ad-
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Scheme 1. Initial report of Bergman
Ar-CH, ——  Ar-CH,-Br
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Ar-CH,-Br —>  Ar-CH,-PO(OEt), B Ar-CH-PO(OEt)2
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Br-CH-PO(OEt), —— Cu-CH-PO(OEt), F
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Ar-CHO + HPO(OEt), ——»

A) Arbuzov Reaction using P(OEt)s;

Ar-CH,-PO(OEt);
OH

B) Electrophilic fluorination using FCIO3 or N-F-benzene sulfonamide;
C) Arylation of phosphonomethy! cuprate (via Zn-compound);
D) Nucleophilic fluorination of hydroxybenzylphosphonates using DAST orEt,N-CF,-CHCIF.

Scheme 2. Preparation of a-fluoro-benzylphosphonates
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Table 1. Preparation of a-hydroxy- and a-fluoro-benzylphosphonates 2 and 3

x{ o i o X—E C'P')\—OEt ELN-SF, X‘@\(ETOH
cat. NEt, OEt Ch,Cl, OEt
1 T, t 2 OH 0°C, 1h F3
X T t mp 2 Yield 3

a H 60 °C 24 h 83 °C 52%
b p-F 70 °C 16 h - 59%
c p-Cl 70 °C 16 h 67 °C 57%
d m-Br 90 °C 24 h - 51%
e p-OMe 40 °C 60 h 121 °C 80%
f p-COOMe 40 °C 3h 108 °C 66%
g 3,5-Me, 25 °Ce 1h* - 91%

@NaOMe catalyzed reaction

Table 2. Preparation of a-fluoro-styrene derivatives by base-induced Wadsworth-Emmons
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dition of diethylphosphite to aldehydes
[9]. Thus mixtures of the aromatic alde-
hyde, diethylphoshite and triethylamine
(molar ratio 1:1:0.1) are stirred without
solvent at elevated temperature (Table 1).
Upon completion of the reaction, most of
the mixtures solidify and may be used di-
rectly in the following step. Alternatively,
the solid compounds 2 may be isolated by
triturating with hexane and recrystallized.
For a representative example see [10].
The conversion to the corresponding o-
fluoro-benzylphosphonates 3 is simply
achieved by treating solutions of 2 in
dichloromethane with diethylamino sulfur
trifluoride at 0 °C.

The methoxy-substituted derivative 3e
was reported to be not accessible by this
route [1][8]. Following the procedures out-
lined in reference [11] the preparation of di-
ethyl 4-methoxy-o-fluoro-benzylphospho-
nate 3e proved to be reproducible.

Wadsworth-Emmons Olefination
of Fluorophosphonates

Having a simple way to access a wide
variety of a-fluoro-benzylphosphonates 3,
these compounds were used for the prepa-
ration of fluoroolefins. In a standard proce-
dure [12], compounds 3 were treated with
lithium diisopropylamide (LDA) as a base
at low temperature and subsequently react-
ed with carbonyl compounds (Table 2).
Aliphatic and aromatic aldehydes and ke-
tones are equally reactive forming a-fluo-
rostyrenes and a-fluorostilbenes 4 in mod-
erate to excellent yields.

In the case of aldehydes and unsymmet-
rical ketones, mixtures of (E)- and (Z)-iso-
mers are obtained in a ratio usually around
1:1. As Burton has already pointed out for
the simple unsubstituted 3a, this ratio is vir-
tually unaffected by the reaction conditions
and only slightly altered by solvent or salt
additives [3]. Some examples in Table 2
however indicate that the substituent in the
phosphonate has an influence on the ste-
reochemical outcome of the reaction. Re-
acting p-methoxy fluorophosphonate 3e
with methyl 4-formylbenzoate (entry 10)
affords the fluorostilbene 4j in a 1:1 ratio of
(E)- and (Z)-isomers. Exchanging the sub-
stituents in the starting materials (hence, re-
action 3f with p-anisaldehyde, entry 11) has
a substantial effect on the stereoselectivity;
the corresponding fluorostilbene 4k is ob-
tained predominantly as its (E)-isomer (cis-
stilbene). Another interesting observation is
the selectivity of the reaction of the
chlorophosphonate 5 [13] with ketone 6
(Scheme 3) to afford almost exclusively the
(E)-chloroolefine 7 in contrast to the cor-
responding fluoro-phosphonate 3a giving
raise to a 1:1 mixture of fluoroolefines 41
(Table 2, entry 12).
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Scheme 3. Reaction of chlorophosphonat 5 with ketone 6
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Applications

Some potential applications have ap-
peared in the literature (Fig.): Fluorostil-
bene A and related compound are claimed
to give nematic liquid crystal mixtures with
improved physical properties [14]; a-fluo-
ro-p-hydroxy-stilbene B is a potent in-
hibitor of LSD (ligninostilbene-a.,3-dioxy-
genase) [15]; fluorinated retinoic acid ana-
logues C and D have been tested as
anticancer drugs [5a][6a]; a novel series of
antimicrobials E are described by Sciotti et
al. (Abbott Laboratories) [16]; substituted
isoxazole F and indole G are prepared and
tested as antidepressants [17]; stilbene de-
rivative H was tested as aromatase inhibitor
and antifungal agent [18]; a screening pro-
gram for antifungal agents in our company
included also fluoroolefine I [19], however
the final marketed drug Lamisil® contains
the alkyne derivative Terbinafine K.

The development of the dopamine an-
tagonist 8 as an antipsychotic agent was
discontinued due to its rapid metabolism to
the corresponding alcohol 9 (Scheme 4).
We therefore were looking for metabolical-
ly stable compounds containing groups
mimicking the labile carbonyl group: 12,
13. Compound 4b was debenzylated and
the amine 10 thus obtained was reacted
with the N-aroyl-aziridine 11 affording flu-
oroolefine analogue 12. It shows only mod-
erate biological activity, similar to that of
the difluoromethylene analogue 13.

a-Fluorinated-B-pyridyl-substituted sty-
roles 4f and 4g (Table 2), were tested as an-
tagonists of subtype S of the metabotropic
glutamate receptor and are therefore of po-
tential interest for the treatment of a num-
ber of diseases [20].

The acids 14 and 15 prepared from the
esters 41 and 7 (Scheme 5) resemble the
structural requirements of thrombaxane A,
synthesis inhibitors (a basic nitrogen in dis-
tinct distance to a carboxylic acid) [21] and
are therefore strong inhibitors of human
platelet aggregation.

During a program to discover LTB, an-
tagonists as new anti-inflammatory agents,
the Eli-Lilly antagonist LY223982 [22]
(Scheme 6) was modified. Part of this effort
was an attempt to understand the SAR of
the p-methoxystyrene olefin which seemed
to be important for antagonist activity. Un-
fortunately, introducing a fluorine sub-
stituent in a-position of the styrene moiety
(target compound 16) had the opposite ef-
fect: the building block 4h turned out to be
unstable; dissolved in CDCl,, 4h remained
unchanged for about 3 days but then de-
composed completely and rapidly to form a
product lacking the fluoroolefin moiety.
Closer examination revealed the formation
of the ketone 17 (the analogue 18 was inac-
tive in the biological assay). This phenom-
enon is easily explained by the presence of
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a p-MeO group which stabilizes a transient
carbocation formed by protonation of the
fluoroolefin moiety and by the formation of
HF inducing the autocatalytic effect. Simi-
lar observations have been made by Rolan-
do in an attempt to cleave MOM-protected
p-hydroxy-a-fluorostilbenes [23].

Alternatives, Summary, and Outlook

Despite the utility of the Wadsworth-
Emmons method described here, modern
Stille and Suzuki reactions have been com-
monly used to generate the fluoroolefins
(Scheme 7). These Pd-catalyzed reactions
of arylboronic acids or stannanes with fluo-
rinated vinyl bromides or aryl iodides with
fluorinated vinylstannanes are stereoselec-
tive and have found some applications
[15][16][24]. However, the preparation of
bromo-fluoro olefins and fluorovinylstan-
nanes in pure (E) or (Z) form are laborious.

A general method is described to pre-
pare fluoroolefins Ar'-CF=CH-R?: aromat-
ic aldehydes Ar!CHO are converted to a-
fluoro-benzylphosphonates which are con-

densed in a Wadsworth-Emmons reaction
with aldehydes and ketones (Scheme 8).
Aliphatic fluorophosphonates (similarly
prepared by base-catalyzed addition of di-
ethyl phosphite to aliphatic aldehydes
R!CHO followed by OH-F exchange us-
ing SF,) do not readily undergo the
Wadsworth-Emmons olefination reaction.
The initial report by Blackburn and Parat
[25] was not verified [8]. Realization of this
goal however would lead to a general
method for introducing fluorine sub-
stituents at sp?> and sp3-centers anywhere
into a carbon chain, as fluoroolefins can se-
lectively be hydrogenated [26].
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