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Ferrocene- and Fullerene[60]-
Containing Liquid-Crystalline
Materials
Thierry Chuard and Robert Deschenaux*

Abstract. This paper shows the versatility of ferrocene and fullerene for the design of
thermotropic liquid-crystalline materials: i) the electrochemical properties of the
ferrocene-ferrocenium system were exploited to design redox-active metallomesogens
(1 and 2); ii) ferrocene-containing side-chain liquid-crystalline polysiloxane (3) and
polymethacrylates (5 and 6) were synthesized by grafting a mesomorphic vinyl-
ferrocene monomer (4) onto commercially available polysiloxane and by free-radical
polymerization of mesomorphic methacrylate-ferrocene monomers (7 and 8), respec-
tively; iii) a first-generation ferrocene-containing liquid-crystalline dendrimer (9) was
synthesized; and iv) liquid-crystalline fullerene (10) and mixed fullerene-ferrocene (11)
derivatives were obtained by function ali zing the C60core with a twin cholesterol moiety.
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ties, held our attention: the construction of
mesomorphic materials from this com-
pound is attractive in the light of the in-
tense efforts currently focused on the de-
sign of fullerene-based materials [7]. In-
terestingly, fullerene derivatives were in-
troduced into membranes [8] and orga-
nized into Langmuir and Langmuir-
Blodgett films [9].

In this contribution, we present recent
results on the design of ferrocene- and
fullerene-containing thermotropic liquid
crystals. In the case of ferrocene, we limit
the description to material-related sys-
tems, i.e., redox -acti ve liquid crystals [10],
side-chain liquid-crystalline polymers [11]
[12], and liquid-crystalline dendrimers
[13]. As for C60, we presenttwo examples:
an organic-type fullerene-containing liq-
uid crystal [14] and a mixed fullerene-
ferrocene derivative [15].

Redox-Active Ferrocene-Containing
Thermotropic Liquid Crystals

Introduction

Organized molecular assemblies, re-
ferred to as supramolecular materials, re-
sulting from the non-covalent association
of molecular units, (e.g., thermotropic and
lyotropic liquid crystals, micelles, mono-
and multi-layers and membranes) have
generated enthusiastic studies at the fron-
tiers of chemistry, physics, biology, and
materials science [1]. These systems are
of interest, firstly, to explore and under-
stand better specific properties at the mo-
lecular level, and, secondly, to design ef-
ficient materials for advanced technolo-
gies, i.e., the nanometer-scale technolo-
gIes.

Among the above-mentioned orga-
nized molecular assemblies, thermotropic
liquid crystals [2] play a crucial role in
everyday life as they have found wide-
spread applications in the manufacture of,
e.g., watches, calculators, mobile tele-
phones, and notebook computers [3]. Fur-
ther applications are expected in the fu-
ture. Achievement of this goal requires the
design of liquid-crystalline materials with
novel properties. Incorporation of active
subunits into liquid crystals should give
rise to such new, highly efficient materi-
als, which will combine the properties of
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the subunits with those of liquid crystals
(organization, anisotropy). A family of
materials illustrating this concept are met-
allomesogens (metal-containing liquid
crystals) [4] and metallomesogenic poly-
mers (metal-containing liquid-crystalline
polymers) [5]: introduction of metals, act-
ing as subunits, into mesogenic structures
allows exploitation of the metal properties
(electroactivity, color, polarizability, mag-
netism, catalytic behavior) within liquid-
crystalline assemblies [4][5].

Our interest in organometallic and
materials chemistry motivated us to de-
sign ferrocene-containing thermotropic
liquid crystals [6]. Ferrocene is a candi-
date of choice to elaborate thermotropic
liquid-crystals owing to its: i) three-di-
mensional structure which offers numer-
ous possibilities for the synthesis of mul-
tiple derivatives by selecting the nature,
number, and positions of the substituents
(liquid-crystalline properties could be
tuned by means of the synthesis), ii) good
solubility in common organic solvents
(making possible the use of usual tech-
niques for the syntheses, purifications,
and characterizations), iii) high thermal
stability, and iv) electrochemical behavior
(fast and reversible one-electron transfer
process). Its redox activity may be used to
develop switchable liquid-crystalline de-
VIces.

During the course of our activity de-
voted to thermotropic liquid crystals,
fullerene[ 60] (C60), which combines a most
aesthetic structure associated with remark-
able magnetic, optical, and redox proper-

Ferrocene has found interesting appli-
cations as an electro active building block
for elaborating switchable molecular ag-
gregates [16], redox -acti ve receptors [17],
redox-active polymeric ionomers [18], and
conducting and magnetic materials [19].
With the aim of developing electroactive
liquid-crystalline materials, we synthe-
sized ferrocene derivative 1 [10]: a per-
alky lated ferrocene unit was selected as an
electron donor because of the ease of ox-
idation of such species in comparison with
less substituted structures [19]. No liquid-
crystalline behavior was detected for 1
(melting point: 154°). Ferrocenium deriv-
ative 2 was obtained by chemical oxida-
tion of 1 with silver tosylate. Thermal
analysis of 2 revealed an interesting be-
havior: when heated, 2 melted at 132° into
an isotropic liquid. On cooling from the
melt, a smectic A phase formed at 83°. No
crystallization was observed for 2; a glass
transition temperature (Tg) was detected
at ca. 37°.

The different thermal behavior ob-
served between 1 (neutral species) and 2
(ionic compound) can be explained in
terms of structural considerations. The
absence of mesomorphic properties for 1
is due to the presence of the bulky fer-
rocene unit which makes intermolecular
interactions too weak to generate meso-
morphism. This behavior is in agreement
with literature data obtained for other fer-
rocene derivatives [6], and, in a general
sense, for materials incorporating a bulky
unit in their structure [4]. In the case of 2,
favorable electrostatic interactions can
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monomer with a liquid-crystalline co-
monomer, or ii) by polymerizing a meso-
morphic ferrocene monomer. In the latter
case, copolymers can be prepared using
either non-mesomorphic or mesomorphic
co monomers. We decided to apply the
second, more elegant, strategy. Properties
of polymers and monomers are reported in
the Table.

Polysiloxane 3 [11] was obtained by
grafting vinyl monomer 4 onto commer-
cially available polyhydrosiloxane follow-
ing a standard procedure (toluene, 70°, 24
h, PtCI2( 1,5-C8H 12)' Polymethacrylates 5
[12a] and 6 [12b] were prepared by free-
radical polymerization (THF, AIBN, 50°)
of methacrylate-containing ferrocene mo-
nomers 7 and 8, respectively. Polymers 3,
5, and 6 showed good solubility in com-
mon organic solvents (CH2CI2, CHCI3,

THF), good thermal stability (no decom-
position was detected up to 250°), and a
narrow molecular-weight distribution (Mw/
Mn: 1.4-1.6).

Enantiotropic smectic C and/or smec-
tic A phases were observed for polymers
3, 5, and 6, as well as for monomers 4, 7,
and 8. Stabilization of the liquid-crystal-
line domain was observed upon grafting
or polymerization. This result is the conse-
quence of stronger interactions between
the mesomorphic units within the poly-
meric structure. Finally, in 4 and 7, the
ferrocene unit is included within the rigid
rod; both compounds melt above 100°. In
8, the ferrocene unit is functionalized by
two flexible chains, the tendency of which
is to destabilize the crystalline state. As a
consequence, 8 melts near room tempera-
ture. This result shows that structural mod-
ification at the ferrocene level can be used
to engineer the thermal and mesomorphic
behavior of liquid-crystalline ferrocene
derivatives.

Ferrocene-Containing Liquid-Crys-
talline Dendrimers

To explore further the capability of
mesogenic ferrocene derivatives to act as
mesomorphic building blocks for the con-
struction ofliquid-crystalline macromole-
cules, we extended our interest to fer-
rocene-containing thermotropic dendri-
mers. Such structures are of interest with
the aim of elaborating mesomorphic re-
ceptors capable of encapsulating different
guest molecules. Desired properties (de-
pending on the guest) could be introduced
into liquid-crystalline materials. As a first
example, prototype 9 [13], which repre-
sents a first-generation dendrimer, was
synthesized. A smectic A phase was ob-

ties: a nematic melt was observed at ele-
vated temperatures (isotropization tem-
peratures were not reported because of
thermal degradation); furthermore, these
compounds were found to be insoluble in
most solvents. The low solubility and poor
thermal stability ofthese polymers is most
likely due to the presence of a large num-
ber of unreacted end groups (carboxylic-
acid chlorides and phenols) because of
their oligomeric nature.

We turned our attention to side-chain
polysiloxanes [11] and polymethacrylates
[12] in which the ferrocene units are ap-
pended to the polymer backbone. We an-
ticipated that such polymers could be pre-
pared from vinyl- and methacrylate-con-
taining ferrocene monomers, respective-
ly, following well-established procedures
developed for organic monomers. Two
synthetic strategies can be applied to pre-
pare ferrocene-containing side-chain liq-
uid-crystalline polymers: i) by copoly-
merizing a non-mesomorphic ferrocene

~C02-o-C02-O--O-0C10H2'

-*1!AgTos

~C02-o-C02-O--O-0C10H2'
~ e 0Fe

H3C~S03 ~
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Prior to our first publication on fer-
rocene-based metallomesogenic polymers
[lla], only one report on ferrocene-con-
taining liquid-crystalline polymers was
known [20]. These materials (main-chain
pol yesters incorporating the ferrocene unit
in their backbone) showed limited proper-

compensate, at least in part (the mesophase
is monotropic), the unfavorable influence
of the bulky ferrocene core, resulting in
the formation of a liquid-crystalline phase.

The above example shows that elec-
tron transfer can be exploited in the fer-
rocene-ferrocenium redox system to de-
sign electroactive metallomesogens. The
possibility of inducing and controlling
mesomorphism is attracti ve for the elabo-
ration of switchable anisotropic materials.

Ferrocene-Containing Thermotropic
Side-Chain Liquid-Crystalline
Polymers
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') Cr = crystal, Sc = smectic C phase, SA= smectic A phase, I = isotropic liquid, Tg = glass transition
temperature. h) Not detected.

Table. Phase- Transition Temperatures [0]') of Monomers 4, 7, and 8, alld Selected Analytical Data
and Phase- Trallsition Temperatures [0],) of Polymers 3, 5, and 6

Monomer rISe rl
A c! A /1

4 124 I 4 149

7 117 130
8 32 5- 8

Polymer /vi 1 MIM T, rl IJ !I /1
" ~ n

31300 23100 IA b) 136 140 183

5 111300 74 00 I. 30 210

6 100 000 63000 1.6 h) 154 185

served from 47 to 150°; no decomposition
was detected up to 250°. The broad meso-
morphic range of 9 is an indication that
higher-generation dendrimers should be
able to encapsulate guest molecules and
retain liquid-crystalline properties.

Fullerene-Containing Thermotropic
Liquid Crystals

Compound 10 [14] represents the first
fullerene-containing thermotropic liquid
crystal. The following structural require-
ments were applied for the successful de-
sign of a mesomorphic C60 derivative: i) to
generate strong intermolecular interactions
between the meso genic units, a twin cho-
lesterol derivative was selected for the
formation of a C60 derivative; ii) a flexible
chain was used to decouple the mesomor-
phic cholesterol frameworkfrom the bulky
C60 moiety (this allows the cholesterol
units to position such as to interact favor-
ably with the neighbors); and iii) owing to
the well-established synthetic procedure
[21], the formation of a methano- fullerene
was chosen to connect the cholesterol frag-
ment to the C60. Fullerene derivative 10
gave a monotropic smectic A phase from
190 to 146°.

Following the structural requirements
applied for the preparation of 10, we syn-
thesized the mixed fullerene-ferrocene
derivative 11 [15]. This latter compound
gave an enantiotropic smectic A phase
from 66 to 118°. Structure 11is interesting
to in vestigate photoinduced electron trans-
fer in organized molecular assemblies as
recently demonstrated in solution for non-
mesomorphic fullerene-ferrocene dyads
[22]. Such studies may lead to optical
devices with new properties.

Conclusion

Careful functionalization of the fer-
rocene and fullerene units gave rise to
liquid-crystalline materials showing a rich
mesomorphism. Structural engineering at
the ferrocene level allowed the control and
tuning of the mesomorphic and thermal
behavior of side-chain liquid-crystalline
polymers. The presence of the ferrocene
units in macromolecular structures is in-
teresting with a view to the development
of switchable materials. Indeed, in the
case of low-molar mass materials, we

showed that electron transfer can be used
in the ferrocene-ferrocenium redox sys-
tem to induce mesomorphism. A mixed
fullerene-ferrocene liquid-crystalline ma-
terial was synthesized. Such a structure is
of interest for the development of new
optical devices. Future activities will be
focused on the exploitation of the redox
activity of the ferrocene in liquid-crystal-
line polymers and dendrimers, and em-
phasis of the structure-mesomorphic prop-
erties relationship of liquid-crystalline
fullerenes.
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