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Abstract: Predicting how a system behaves under changing conditions is an essential component of science and
engineering. The ability to make accurate predictions about the system indicates that it is well understood and
provides the opportunity to simulate the response to conditions that would be empirically difficult or impossible to
test. In the life sciences, the term systems biology was introduced to articulate the notion that the molecular and
phenotypic response of a cell or organism to perturbations is the result of interplay of a multitude of molecules.
The ability to predict the behavior of such complex molecular systems remains challenging and inevitably
requires the involvement of different types of models and data that support them. In this article, we discuss a
range of data-driven models that have proven particularly useful for predicting the behavior of biological systems
at different levels of complexity and the matching data generation methods that support them. We specifically
focus on predictions based on protein or proteome data generated by mass spectrometry. We describe three
case studies that represent frequently encountered situations in systems biology.
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1. Predictive Models and their Dependencies
Predicting the future is a natural humandesire. In ancient times,

oracles claimed to predict fate and fulfilled such desires. Once
scientists began to understand the principles of natural processes
such as weather, sun eclipses, or diseases, they started to make
predictions about these phenomena. Predictions are inherent
to the scientific method, that relies on formulating hypotheses
from the current body of knowledge that are then tested in an
experiment. Furthermore, predictions are important in non-
scientific disciplines such as sports betting, election outcomes, or

demographics. In some instances, predictions have become very
accurate, such as for sun eclipses, weather for the next few days,
or the behavior of engineered devices such as clocks or motors.
In contrast, accurate predictions in other fields, exemplified by
earthquakes or stockmarket changes, have remained very difficult
or impossible.

In chemistry and the life sciences, the need tomake predictions
has a long history. Medicinal chemists have used methods like
quantitative structure–activity relationship (QSAR) to predict
how structural changes of a molecular entity affect its function
(reviewed inNelson and Ismail[1]). In the life sciences, particularly
in medicine, significant efforts have been spent on identifying
molecular or physiological markers, so-called ‘biomarkers’,
capable of predicting the health trajectory of individuals or
groups of individuals. Outstanding examples of such predictions
include the Framingham risk score for cardiovascular disease, the
APGAR score to assess the health of newborn babies, and PSA
score indicating the likelihood of the presence of prostate cancer
in a patient.Whereas the predictive accuracy ofmany of these tests
remains far from perfect, the expectations to employ molecular
patterns to support important mechanistic, epidemiological,
or clinical predictions has dramatically increased over the
last years. This is illustrated by the arrival of the personalized
or precision medicine era, which is rooted in the expectation
that multiple layers of high dimensional data, typically data
collected by ‘Omics technologies’ on a specific person, can be
computationally integrated and analyzed to make predictions
that guide and improve medical therapy of the tested individual.
Similarly, in basic biology, the emergence of the systems biology
paradigm firmly established the need for predictive models of
biological processes to provide insights into their complexities of
design and operation. Outstanding examples of this type of effort
include mechanistic models of the bacterial flagellar motor,[2] the
circadian clock[3] or the mitotic cell cycle.[4]
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large data sets with the aim of better understanding the underlying
processes and infer predictive models. These models should
ideally not only explain the actual case, but be generalizable
and thus applicable to other situations, even situations that are
for practical reasons not experimentally testable. The recently
developed Omics technologies have transformed biology and
medicine into the domain of data-rich sciences. In the following
paragraphs, we will discuss approaches that have been used to
gain biological knowledge frommolecular data in the life sciences
and relate them to the methods that were used to generate data
suitable for these analyses.

2. Techniques to Generate Protein Data to Support
Predictive, Data-driven Models

2.1 General Considerations on Biomolecular Data
Generation

In the absence of a comprehensive theory to predict the
behavior of biological systems, data-driven approaches need to be
pursued. Over the past few decades, life science research has been
transformed by the development of a wide range of techniques to
reproducibly and systematically identify and quantify different
types of biomolecules. The need to sequence nucleic acids at a
large scale pioneered these developments and culminated in the
current, powerful genomics techniques that preferentially use
fluorescent labelsasa readout toquantify theamplifiednucleicacid
molecules. In contrast, the analysis of other types of biomolecules
depends on signals obtained from the native materials extracted
from biological specimens. In such cases mass spectrometry is
the analytical method of choice to analyze metabolites, glycans,
lipids, proteins, and peptides. Because proteins are the type of
biomolecule that exert most biological functions and thus define,
as an ensemble, the biochemical state of a cell, we focus this
manuscript on mass spectrometric methods that generate data
suitable to support functional predictions of cells or tissues. The
systematic, parallel analysis of many proteins extracted from a
biological sample is referred to as proteomics.

2.2 General Principles of Mass Spectrometric Analysis
of Proteins and Proteomes

Mass spectrometric (MS)measurements require that the tested
analyte be present in the vacuum system of the mass spectrometer
in ionized form. MS is a generic method and more than 100 years
old,[5] but its application to proteins and peptides has a much
shorter history. For the traditionally available ionization methods,
it was very challenging to ionize peptides and proteins, without
obliterating them. This changed in the late 1980s when almost
concurrently two ‘soft’ ionization methods were developed that
provided a rather general solution to the problem of ionizing
intact peptides, proteins and other larger molecules like glycans
and lipids. These two methods, electrospray ionization (ESI)[6]
and matrix assisted laser desorption ionization (MALDI)[7]
respectively, transformed protein and proteome research. With
these ionization methods essentially any polypeptide could
be ionized and, provided a suitable instrument was interfaced,
transferred into the gas phase and subjected to mass spectrometric
analysis.

Over the last three decades, a wide range of techniques andMS
instruments for proteome research has been developed applied and
reviewed.[8]Most instruments support an approach termed bottom-
upproteomics that involves the transformationof proteins extracted
from a biological source into peptides by the use of proteases. For
technical reasons, trypsin is the most frequently used protease. The
thus generated peptides are then subjected to two stages of analysis
in a tandem mass spectrometer (MS and MS/MS measurement).
In this process, the mass to charge ratio (m/z) of the molecular
ions of a specific peptide is first determined and secondly, specific

To make accurate predictions, essentially two main elements
are required: Theory and data. Theory relies on so-called first
principles and scientists, particularly theoretical physicists like
Einstein over the last century, provided powerful examples how
theories can advance our understanding of complex systems. The
other element is data, that are acquired by careful observation of
a process or system. Epidemiology, astronomy, and many other
fields of the natural sciences have greatly profited from accurate
observations and the ensuing data then paved the way for the
discovery of the underlying principles of these processes and
systems. At the end, both accurate data and a good theoretical
understanding are required to be fully able to predict the behavior
of a system. However, for different fields of science, the relative
availability of theory and data varies considerably (Fig. 1). For
example, astronomers can predict sun eclipses based on accurate
data from the location of celestial bodies and because they
have a profound understanding of the physical laws that define
their movements. Similarly, in engineering or particle physics,
a strong knowledge of the first principles enables engineers to
build airplanes whose aerodynamic properties are then assessed
in specific test flights or physicists to design the Large Hadron
Colliderexperimentstotest their theories. Incontrast, themolecular
life sciences generally lack first principles and theory. Therefore,
predictive models in biology and medicine are substantially
dependent on acquired data that indicate the acute state of the
system. Encapsulated under the title ‘Omics research’, a range
of technologies has been developed over the last two decades
that now generate large volumes of reproducible, quantitatively
accurate, and comprehensive molecular data of biological and
clinical specimens. These data can be used to support data-driven,
statistical predictions or to infer relationships, even in the absence
of strong theory. In other fields, neither theory nor sufficient data
are available to support accurate predictions. It is for example very
challenging to predict how to form a successful company, how to
make good laws, or how to guide political or economic decisions.
In these fields, decisions are mainly guided by intuition.

Hence, different fields of science and human activity find
themselves in drastically different areas in the data vs. first
principle graph displayed in Fig. 1. Yet, they aim to achieve the
same objective; to make accurate predictions. Fields in which
first principles and theory are well developed can use the theory
to generate models whose predictions can then be tested in
experiments. In fields which are rich in data, the inverse approach
of using data to generate models can be employed. This is,
however, inherently more difficult. Regression, classification, or
neural networks are groups of algorithms that have been applied to
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Fig. 1. The data vs. first principle graph. A detailed understanding
enabling accurate prediction of processes requires both advanced theo-
retical knowledge (y-axis) and available accurate data (x-axis). Different
scientific and non-scientific fields attaining predictions find themselves
in different areas of this landscape.
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processes like metabolic pathways[12] (see also section 3.2 below),
but is impractical to support modeling of more complex systems.

To overcome this limitation, we developed SWATH-MS,
a massively parallel targeted mass spectrometry technique that
extends the scope of targeted measurements from hundreds of
peptides via SRM to thousands of peptides in a single injection.[13]
SWATH-MS acquires fragment ions of all peptide ions present
in a user-defined (chromatographic retention time vs. precursor
m/z) window of an LC-MS/MS measurement and is coupled to a
targeted data analysis strategy detecting and quantifying specific
peptides in a sample. The method is schematically illustrated in
Fig. 2. The SWATH-MS method was initially implemented on
Qq-TOF instruments of the instrument manufacturer Sciex. The
method has experienced rapid uptake and is now also implemented
under the more generic term data-independent analysis (DIA) on
instruments of a range of suppliers and is rapidly becoming the
method of choice for generating large proteomic data sets, in
particular the type of large data matrices described above.

By concurrently fragmenting multiple types of precursor
ions selected in extended isolation windows (typically 10–25
Da window width), data acquisition using SWATH/DIA deviates
from the principle inherent in DDA mass spectrometry that a
specific precursor ion is isolated prior to fragmentation and that
therefore all the observed fragment ions in the spectrum can be
associated with the sequenced peptide. SWATH/DIA generates
convoluted fragment ion spectrawhere the signals are derived from
multiple precursors that are concurrently selected. Consequently,
these complex fragment ion spectra need to be deconvoluted to
support the assignment of fragment ions to a specific peptide. We
solved this challenging problem by developing the software tool
OpenSWATH that effectively applies a targeted strategy that is
conceptually similar to the data analysis of SRM data.[14] In effect,
the tool uses prior information in the form of a spectral library
to extract peak groups from the SWATH/DIA dataset that are
then statistically scored for their ability to indicate the presence
of the targeted peptide (Fig. 2). The signal intensity of the peak
group additionally indicates the abundance of the peptide in the
sample. Each sample is generally acquired in a single LC-MS/
MS run and the resulting data file is stored in a computer and
constitutes a permanent record at the level of fragment ion spectra
that can be perpetually re-searched. At present, the SWATH/DIA
method has been benchmarked in terms of its reproducibility
across laboratories,[15] the consistency and accuracy of data
analysis,[16] and extensive spectral library resources supporting
the targeted data analysis strategy have been published and are
publicly accessible.[17] Overall, the technique has reached an
impressive performance profile. In a cross-lab benchmarking
study 11 groups worldwide identified and quantified close to
5000 proteins with a high level of consistency and quantitative
precision from 1 microgram of total peptide mass injected.[15]
With recent advances in mass spectrometry, in the range of 7000
proteins could recently be reproducibly identified and quantified
at a coefficient of variation of 10–15% from as little as 250
nanogram of total peptide mass injected, and even from 4 ng
peptide mass, which corresponds to an estimated 10–15 HeLa
cells, in excess of 1000 proteins were detectable.[18] Overall,
this favorable performance profile, particularly the high level of
pattern reproducibility, quantitative precision, ease of use, and
relatively high sample throughput make SWATH/DIA a powerful
method for the generation of data in support of predictive models.

3. Methods to Generate Predictive Models

3.1 General Considerations on Predictive Models and
their Use in Biology

Living cells or organisms are immensely complex systems in
which thousandsof biochemical reactions occur in parallel at every

molecular ions are isolated that are subjected to fragmentation
along the peptide backbone. In the most frequent implementation
of bottom-up proteomics, known as shotgun proteomics or data-
dependent analysis (DDA), the mass spectrometer sequentially
selects precursor ions (molecular ions of a specific peptide) for
fragmentation from all the precursors detected by the instrument at
a particular time point. The masses and intensities of the resulting
fragment ions are then recorded, generating a fragment ion
spectrum of a peptide. Importantly, the fragment ion spectrum of
a peptide reflects its amino acid sequence and can be considered
a unique ‘fingerprint’ of that specific peptide. In a subsequent
computational operation, referred to as protein inference, the
identified peptides are used to determine a set of proteins identified
in the measurement. MS instrumentation and software tools for the
analysis of fragment ion spectra progressed rapidly, so that now
thousands of proteins can be routinely identified from a biological
sample.With the introduction of different quantification strategies,
the identified proteins can also be quantified, either in absolute
terms (i.e. how many copies of a protein are present in a sample)
or in relative terms (i.e. how does the abundance of a protein
differ between two or more samples). In general, these techniques
confidently answer the questions which proteins exist in a sample
and how much of each identified protein is present.

2.3 Specific Data Requirements to Support Predictive
Models and the Targeted MS Methods that Match them

Predictive models generally require input data that contain
quantitative measurements of sets of proteins that describe the
system under investigation in different states. Such data are best
portrayed as a data matrix in which one axis represents the number
of replicate measurements (i.e. conditions) and the other axis
represents the proteins (i.e. features) that have been quantified in
each replicate. The quality of the predictions made from such data
matrices critically depends on the quantitative accuracy and the
reproducibility of the measurements. High reproducibility produces
datamatriceswith aminimal number ofmissing values across repeat
analyses of the same sample and can help distinguish values that are
missing from the matrix for technical or biological reasons.

For technical reasons that are quite well understood, it has
remained challenging to generate complete and quantitatively
accurate data matrices by the widely used DDA method.[9] We
therefore developed and applied targeted mass spectrometry
methods to consistently quantify sets of proteins across repeat
analyses. The prototypical targeted MS method is called selected
reaction monitoring (SRM). In SRM, ions in a window centered
around the precisemass-to-charge (m/z) ratio of a targeted peptide
arerecursivelyselectedforfragmentationoverthechromatographic
elutiontimeofthepeptideandthemassspectrometerisprogrammed
to selectivelydetect specific fragment ions that are, in combination,
specific for the targeted peptide. The net result of this method is
a group of fragment ion chromatograms that collectively test the
hypothesis that the targeted peptide is absent from the sample.
Rejection of this hypothesis indicates the presence of the targeted
peptide in the sample. SRM is a robust, highly reproducible and
quantitatively precise method with a dynamic range of about 5
orders of magnitude. To increase the utility of this method for
proteomics, we generated extensive spectral libraries that serve
as prior information defining the instrument settings required to
acquire the fragment ion chromatograms. These include a library
containing assays for every yeast protein[10] and a library that
covers more than 99% of the human proteome,[11] thus making
essentially all human proteins confidently and reliablymeasurable
by mass spectrometry. In spite of the favorable performance
profile, the use of SRM in proteomics is limited by the relatively
low number of peptides – in the range of tens to few hundreds
– that can be quantified in a single injection. SRM is therefore
well suited to support predictive models of relatively confined
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of detail and accuracy they explain the biological process under
study. In the most detailed case, processes are explained by actual
physical constants that can be estimated from solving ordinary
differential equations describing e.g. biochemical reactions or
interactions between proteins. However, suchmodels are typically
only fully defined for processes with a few interacting proteins,
exemplified by the flagellar motor of bacteria.[2]A type of model
often used in metabolism research or in other areas with relatively
high levels of prior knowledge are constrained-based models,
where specific constraints e.g. the stoichiometry of metabolic
reactions are used to optimize amodel towards a defined goal such
as maximal growth. Graph-based models can be used to solve
topological problems, such as the most likely path by which a
signal is transmitted across a network of signaling pathways. In
this case, and in general in systems biology, networks are used as
a representation of the complex cellular processes or interactions.
These networks, consisting of nodes connected by edges, can
represent many different aspects of cellular functionalities from
protein–protein interaction, signaling pathways, or how proteins
affect each other (i.e. functional interaction) exemplified by the
phosphorylation of a protein by a kinase. Assessing correlation
by regression between different quantitative values is a popular
method in biomedical research to reveal association between
genes and any phenotypic trait (Genome-wide association studies
(GWAS) and quantitative trait loci (QTL)). Finally, similarity
between different genetic or proteomic profiles (i.e. hierarchical
clustering) is often used to characterize the underlying structure of
biological networks or processes and patient or disease subgroups.
In the following, we show three different examples of different
modeling approaches that were used to infer relationships or new
biological knowledge from proteomic data acquired by the mass
spectrometric methods described in section 2.

3.2 Correlative Analysis of Molecular Data Predict
the Functional Effect of Protein Phosphorylation

Protein phosphorylation is a crucial post-translational
modification and is one of the most important regulatory signals in
cells. Phosphorylation is known to play an important role in growth
factor signaling, immune activation, and regulation of homeostatic
processes. Prior to the advent of mass spectrometry-based
phosphoproteomics, it was very challenging to detect and quantify
phosphorylation sites on a larger scale. This dramatically changed
with the development of mass spectrometric methods which now
support the identificationof thousandsofphosphorylation sites from
complex samples. However, the ability to identify phosphorylation
sites has far outstripped the ability to identify their functional
significance.We knowonly for a smallminority of the siteswhether
and how they regulate a cellular process.

In the model organism S. cerevisiae, 204 enzymes catalyze
the central carbon and amino-acid metabolism by facilitating
168 biochemical reactions in cells. To predict the functional
significance of phosphorylation sites in the metabolic system,
we correlated protein abundance, phosphorylation stoichiometry,
and metabolic flux through the enzyme in cells across different
metabolic states. Phosphopeptide abundance data was acquired
using DDA,[12b] protein abundance data by SRM,[12b] and the
metabolic fluxes were estimated using constrained-based
analysis.[12a] Based on the profiles, specific phosphoproteins
were categorized into different cases, depending whether the
phosphoprotein and protein levels changed in concordance
or if only one type of biomolecules changed. For 11 out of 35
enzymes tested, sufficient data was available to correlate the level
of phosphorylation and previously estimated metabolic fluxes.
Out of these, the level of phosphorylation in five enzymes (Pda1,
Fba1, Gpd1, Gpd2, and Pfk2) correlated with the estimated flux
of the biochemical reaction they catalyze (Fig. 3), suggesting that
the respective phosphorylation sites regulated this biochemical

point in time. With the emerging ability to identify and quantify
the molecules that make up a cell (genes, proteins, metabolites,
lipids), the next focus is to understand how a coordinated interplay
of these molecules results in a specific phenotype. Specific
subsystems for which extensive prior information is available
have been successfully modeled and, depending on the type of
data and available prior knowledge, different types of modeling
approaches have been employed. These models differ in the level
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Fig. 2. The concept of SWATH-MS/DIA data generation and extraction.
Data acquisition consists of recursively selecting the precursor ions in
user-defined precursor selection windows, fragmentation of the selected
ions and recording of the resulting convoluted fragment ions. The win-
dows are arranged as adjacent segments so that in the overall process
all the ions in a user-defined (chromatographic retention time and m/z)
window are repeatedly fragmented (middle section). The SWATH-MS/
DIA data analysis method consists of using query peptide information
present in a spectral library to extract the fragment ion traces from the
acquired convoluted fragment ion map. This query peptide information
consists of the mass coordinates of the best ion signals, their relative ion
intensity, and the retention time information. Several fragments from the
same peptide co-elute and form a peak group that confidently identifies
the targeted peptide. The intensity of the peak group indicates the pep-
tide quantity. Statistical models accurately compute the probability that
a targeted peptide has been identified in the sample.
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process. In addition, targeted proteomics (SRM) was used to
estimate the absolute abundance of the total, phosphorylated, and
non-phosphorylated protein for Pda1 and Pfk2 from the same cell
extract using heavy isotope labelled reference peptides. The good
correlation between the non-phosphorylated protein levels and the
estimated flux suggested that the phosphorylation inhibited the
activity of these enzymes.

In conclusion, this study showed how careful measurements
of protein and phosphoprotein levels by mass spectrometry, and
correlation with metabolic flux data can make a prediction which
phosphorylation sites are functionally important for cellular
processes, thus suggesting their functional effect.

3.3 Logic-based Modeling of Cell Specific Regulation
of Cholesterol Homeostasis

To make predictions in a more complex biological system,
cholesterol homeostasis in human cells, we used proteomic
data and logic modeling to understand the processes underlying
variability of cellular drug response.[19] Whereas it has been
well known that different individuals and model cell lines
significantly differ in their response to drug treatment or other
external perturbations, it is typically not clear which processes
determine this variability, even though this knowledge is critical
for translational research. To address this question, we perturbed
the system that maintains cholesterol levels in human cells in
four different model cell lines with the same panel of drugs (e.g.
atorvastatin) or siRNAs and quantified the abundance of more
than 3000 proteins after each of the 23 perturbations. As the goal
was to quantify as many proteins as possible across the more
than 280 samples of the study, the SWATH-MS/DIA approach
was selected for this project. For 12 drug perturbation conditions
across the cell lines (159 samples), we quantified the drug and
metabolite levels in addition to the protein levels. To understand
which biological processes were variable between the cell lines
based on this vast quantitative data, we opted for a mathematical
modeling approach that generated cell-line-specific models of the
core cholesterol regulatory mechanisms. This approach, called
CellNOpt, was developed by the group of Julio Saez-Rodriguez
and produces mathematical models from experimental data and
prior knowledge (first principles).[20] These models could then
be compared to understand how the tested cells differ in the
biochemical processes that regulate cholesterol levels. These
models consist of nodes, representing the proteins andmetabolites,
and edges that represent the functional interactions between these
entities. The edges are defined by three parameters: Two of these

parameters define a hill-type function that describes in which
manner the source node affects a target node (Fig. 4A). The third
parameter is a parameter that determines how fast the source nodes
affects the target node. Furthermore, we described in our study
some of the metabolite interactions using mass action kinetics.
By using experimental data for 15 proteins and 16metabolites, we
trained 108 parameters describing the core network of cholesterol
regulation consisting of 24 protein nodes, 12 metabolite modes,
6 input nodes and 59 interactions. For each cell line, 100 models
were trained based on the bootstrapped data. Hence, we obtained
a distribution of 100 values for each parameter that described
the bootstrapped experimental data in the best possible way (as
defined by the minimal difference between levels predicted by the
model after all 23 perturbations and the experimentally measured
values in these conditions) (Fig. 4).

This study showed that a number of cellular processes were
involved in the regulation of cholesterol levels in the tested cells
and that the variability in drug response could not be reduced to a
few factors (e.g. difference in drug uptake). Bymeasuring both the
intracellular drug concentration, we showed that sometimes cell
lines that experience a lower internal drug concentration resulted
in a higher phenotypic effect, suggesting that pharmacodynamic
factors downstream of the drug target dominated. Furthermore,
we observed a highly variable effect of transcription factors on
the expression of their target proteins. That the variability was not
due to the variable activation of the transcription factor could be
deduced because the targets regulated by the same transcription
factor did not vary in a coherent manner, suggesting that the
variability was introduced downstream of the transcription factor.

In summary, this study showed how an extensive matrix of
proteomic data acquired from differentially perturbed cells by
SWATH/DIA, in conjunction with prior knowledge of a complex
regulated cellular process could be effectively integrated into a
mathematical representation of a biological cellular process. In
this study, we only integrated measurements of 31 molecules,
representing less than 1% of themeasured proteins. Consequently,
a large potential still exists to incorporate further data into a more
extensive model. This is presently limited by the availability of
prior biological knowledge on how exactly these protein levels
are connected to the perturbations or other nodes.

3.4 Statistical Modeling of the Effects of Genomic
Variability on Biochemical Pathways and Phenotype

The question how genomic variability affects phenotypes
is of fundamental importance in basic biology and clinical
research. The significance of this question has been further
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inbred lines of the DGRP that represent the genomic variability
of an outbred population. We selected 30 strains with extreme
wing size phenotypes of which 15 strains had large wings and
15 strains had small wings. The wing size was determined
by morphometric measurements and represents a genetically
determinednumerical phenotype.We then isolatedwing imaginal
discs which contain larval state cells that are predetermined to
form the adult wings from male and female larvae of the same
DGRP strains. Extracted proteins from these imaginal discs
were subjected to SWATH/DIA analysis in duplicate. Overall,
the study generated a data matrix consisting of 120 quantitative
proteome analyses in which 6755 unique peptides representing

increased by the powerful genomic technologies that now provide
accurate complete genomic sequences from whole populations.
Frequently, genomic variability discovered by such analyses in
two or more groups, e.g. clinical cases and controls, are then
statistically associated to identify variants that strongly associate
with the observed phenotype. Whereas this type of relationship is
informative, it does not indicate biochemical causality.

In an attempt to link statistical associations between
genotypic variability and a numerical phenotype to the
underlying biochemical mechanisms, we used SWATH/DIA
proteome measurements in a Drosophila genetic reference panel
(DGRP).[21] Specifically, we selected larvae and adult flies from

31 proteins or metabolites

23
co
nd
iti
on
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

AC
AC

A

AC
AT
2

AC
AT
2a
ct

Ac
et
oa
ce
ty
l-C

oA

Ac
et
yl
-C
oA

AC
LY

AC
SL

3

At
or
va
st
at
in

At
or
va
st
at
in
La
ct
on
e

C
ho
lE
R

C
ho
lM
ed
ia

D
H
C
R
24

D
H
C
R
7

D
LA
T

FA
SN

FD
FT

1

FD
PS

G
W
39
65

H
M
G
-C
oA

H
M
G
C
R

H
M
G
C
S1

H
M
G
C
S1

ac
t

hy
dr
ox
y-
At
or
va
st
at
in

hy
dr
ox
y-
G
W
39
65

ID
I1

LD
LR

LS
S

LX
R

M
ev
al
on
at
e

M
VD

N
PC

1

N
SD

H
L

SR
EB

P

SR
EB

P1

SR
EB

P2

T0
90
13
7

control
02GW
1GW
02T09
1T09
05HC
1HC
2statin
10statin
LPDS
LPDS1statin
LPDS5statin
sSREBP1_s129
sSREBP1_s130
sSREBP2_s27
sSREBP2_s28
sSREBP1/2
sLDLR_s06
sLDLR_s07
sNPC1_sc
sNPC1_s69
sHMGCS1_s62
sHMGCS1_s63

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.00
0.25

0.50

0.75

1.00

error

Time

Ab
un
da
nc
e
[a
.u
.]

A

B

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

SREBP2

FD
FT

1

Hek

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

SREBP2

FD
FT

1

Hela

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

SREBP2

FD
FT

1

HepG2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

SREBP2

FD
FT

1

Huh7

SREBP2 > FDFT1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

SREBP2

H
M
G
C
S1

Hek

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

SREBP2

H
M
G
C
S1

Hela

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

SREBP2

H
M
G
C
S1

HepG2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

SREBP2

H
M
G
C
S1

Huh7

SREBP2 > HMGCS1

Fig. 4. A) Estimated relationships between the source and target node (e.g. SREBP and FDFT1 and HMGCS1 respectively) are shown as curves de-
fined by two trained parameters. These parameters have been trained 100 times for each cell line and the parameters from the best overall solution
(red), 10% best solutions (black) are shown. B) Based on the estimated parameters for all edges, this is the prediction of the overall model on how
the different proteins and metabolites (x-axis) changed across the 23 different conditions (y-axis) of one cell line. The red dot at the end represents
the experimentally validated abundance value for the experimentally measurable nodes (red). Figure reproduced with permission from ref. [19].
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Fig. 5. A) Experimental design. Wing disks from large wing and small wing Drosophila melanogaster strains were isolated, proteins extracted and
quantified by SWATH/DIA mass spectrometry. B) Shows the data matrix generated consisting of 1610 proteins quantified across 120 proteome mea-
surements. Colors on top indicate the respective fly phenotypes. C) Results. Computed network of proteins for which the abundance was regulated
by specific genetic loci. The thus identified proteins formed a network that was strongly enriched in few biochemical functions as indicated in the
text that are strongly deterministic of wing size. Figure reproduced with permission from ref. [22].
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1610 proteins were reproducibly identified and comparatively
quantified across replicates.

We used this protein abundancematrix to carry out a proteome-
wide association study (PWAS) in which protein abundance was
associated with wing size, specifically the centroid wing size. This
analysis, the first PWAS study on a complex trait, identified 34
and 304 protein entities as associatedwith relative (i.e. normalized
to the body size) and absolute wing size. Overall, the data indicate
that ∼20% of the quantified proteins were associated with wing
size and about one half correlated positively and the other half
negatively.[22]

Further progressing towards investigating the biochemical
mechanisms thatdeterminewingsize,we identifiedbyhierarchical
clustering protein modules consisting of proteins associated with
wing size and integrated thesemodules with the STRING network
to generate amolecular network consisting of 303nodes connected
with 1,560 edges thatwas highly enriched for specific biochemical
functions (Fig 5C). Overall, the results indicated that processes
including RNA splicing, chromatin assembly, protein folding
and translation, and cytoskeletal organization correlated with the
body size in general. Furthermore, the data indicated that glucose
metabolism exhibits a relatively specific correlation with wing
size whereas oxidative phosphorylation was negatively correlated
with wing size, suggesting that relatively small shifts between
respiration and glycolysis were a main factor determining wing
size. Overall, this study demonstrated that statistical association
between genetic variability and protein abundance identified a
high number of proteins for which the abundance was determined
by a specific genetic locus (pQTL, protein quantitative trait
locus). Notably, these proteins collectively formed a network
that predicted specific biochemical processes that determine
wing size in flies, thus making a link between genetic variability,
biochemical processes affected by the genetic variability, and the
phenotype they determine.

4. Outlook/Discussion
We have outlined above three different studies from our lab

where state-of-the-art proteomic data was used to increase our
understanding of complex biological processes. Current mass
spectrometers and newmethods such as SWATH/DIAhave greatly
increased theability toproducehighlyaccuratequantitativedataon
protein abundance across hundreds of biological samples. Hence,
the challenge lies in using this data to deduce new biological
knowledge (i.e. theory/first principles) in order to advance our
predictive capabilities (Fig. 1). This challenge is not unique to
proteomics research but exists as well in other omics fields. As
an example, the DREAM Challenges (www.dreamchallenges.
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have posted several similar challenges. Examples are the network
inference of signaling networks or drug sensitivity prediction.[23]
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area are required. All of these efforts are of course only possible
if accurate, meaningful, and relevant data is available. With mass
spectrometry-based proteomics it is now possible to generate such
data sets on protein abundance, phosphorylated protein residues,
or interaction of proteins in cells or clinical samples opening up
new approaches for attempting predictions about the behavior of
biological systems in basic biology and clinical research.
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