On-Line Process Control of the Roast Degree of Coffee

Flurin Wieland*, Alexia N. Gloessb, Marco Kellera, Andreas Wetzelb, Stefan Schenkerb, and Chahan Yeretzian**

*Correspondence: Dr. C. Yeretzian, Tel.: +41 58 934 55 26, Fax: +41 58 934 55 20, E-mail: chahan.yeretzian@zhaw.ch

Zurich University of Applied Sciences, Institute of Chemistry and Biological Chemistry, CH-8820 Wädenswil; Bühler AG, Gupfenstrasse 5, CH-9240 Uzwil

Keywords: Coffee - On-line process control - Principle Component Analysis (PCA) - Proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) - Roasting

The flavour of a freshly prepared cup of coffee is the final expression and perceptible result of a long chain of transformations. Along this journey from the seed to the cup, roasting is without doubt the most significant processing step. First, from a quality perspective, it is the very step where the coffee aroma is unlocked and formed from the precursors in the green bean. Second, from an economic perspective, it defines whether the potential in the green beans is expressed in the cup and materializes also in economic terms – even the best crop can be spoiled if not properly roasted.

Here we report on the development of a fast on-line process control technology for a consistent roast, batch after batch. It involves the on-line monitoring of the roasted off-gas using Proton-Transfer-Reaction Time-of-Flight Mass-Spectrometry (PTR-ToF-MS) and the analysis of the PTR-ToF-MS data via principle component analysis (PCA) to predict the roast degree in real time. The PCA was calibrated in advance with a large number of roasting trials, to develop the predictive model.

During each roasting cycle, the roasted off-gas is analysed on-line by PTR-ToF-MS, as a means to follow the evolution of the roasting process. Furthermore, the roast degree, the sensory profile (human panel) and the profile of volatile flavour compounds (gas chromatography) are measured off-line. To link the time-dependent PTR-ToF-MS mass profile with off-line measured quality attributes of coffee, a large number of ‘calibration experiments’ were performed. This allowed in a first study the development of a predictive model for the roast degree based on on-line monitored PTR-ToF-MS profiles. More specifically, the off-line determined roast degree was calibrated against the PTR-ToF-MS data (intensity of a series of relevant ion masses) at the end point of each roasting cycle, using multivariate statistical analysis, and a predictive model was derived. These ion masses were subsequently monitored on-line and the roast degree predicted during a roasting cycle.

This research demonstrates that a time-resolved analysis of the roasted off-gas by PTR-ToF-MS provides a detailed picture of the evolution of the roasting process and allows establishing a real-time process control tool to ensure highest consistency of the roast degree.

Received: March 27, 2012

Reference